تخصص تّقنية التصنيي الفذائي

الأحياء الدقيقة وِ الأغذية
(عملي)
-10 صنع

طبعة IEYQ هـ

مقلدمة"

الحمد لله وحده، والصـلاة والسـلام على من لا نبي بعده، محمـد وعلى آله وصحباه، وبعد :

تسعى المؤسسـة العامة للتدريب التقني والمهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنيـة والمهنية المتوفرة يِّ سـوق العمل، ويأتي هذا الاهتمام نتيجـة للتوجهات السـديدة مـن لدن قادة هذا الوطن التي تصب پِ مجملها نحو إيجاد وطن متكامل يعتمد ذاتياً على موارده وعلى قوة شبـابه المسلح بالعلم والإيمـان من أجل الاستمـرار قدمـاً يٌ دفع عجلة التقدم التتموي لتصل بعون الله تعالى لمصاف الدول المتقدمة صناعياً.

وقد خطت الإدارة العامـة لتصميم وتطوير المناهـج خطوة إيجابيـة تتفق مع التجـارب الدولية المتقدمة ِّغ بناء البرامـج التدريبية، وفق أسـاليب علمية حديثة تحاكي متطلبات سوق العمل بكافة تخصصـاته لتلبي متطلباته، وقد تمثلت هذه الخطوة ِِّ مشروع إعداد المعايير المهنية الوطنية الذي يمثل الركيزة
 العمل و المؤسسـة العامة للتدريب التقني والمهني بحيث تتوافق الرؤية العلمية مـع الواقع العملي الذي تفرضه متطلبات سوق العمل، لتخرج هذه اللجان پِ النهاية بنظرة متصكاملة لبرنامـج تدريبي أكثر التصـاقاً بسوق العمل، وأكثر واقعية يٌ تحقيق متطلباته الأسـاسية.

وتتــاول هذه الحقيبة التدريبية " الأحياء الدقيقة يِّ الأغذية -عملي " لمتدربي قسم" تقنية التصنيع الغذائي " للكليـات التقنية موضوعات حيوية تتـاول كيفية اكتسـاب المهارات الـلازمـة لهذا التخصص. والإدارة العامة لتصميم وتطوير المناهـج وهي تضـع بين يديك هذه الحقيبة التدريبيـة تأمل من الله عز وجل أن تسهم بشكل مبـشـر پِ تأصيل المهارات الضرورية الـلازمة، بأسـلوب مبسط يخلو من التعقيد، وبالاستعانة بالتطبيقات والأشكـال التي تدعم عملية اكتسـاب هذه المهارات. والله نسـأل أن يوفق القائمـين على إعدادهـا والمستفيدين منها لما يحباه ويرضاه، إنا سميع مجيب الدعاء.

الإدارة العامة لتصميم وتطوير المناهج

تّهيلـ

عـرف تأثير الميكروبـات منــذ قـديم الزمـان حيـث حفـّ الإنسـان القـديم غـذاءه مـن الفسـاد بطـرق عديدة كالتجفيف والتمليح، ولكن علم الميكروربيولوجيا بوضـعة الحـالي يعتبر مـن العلوم الحـديثة الـتي برزت إلى العالم منذ حوالي قرن ونصف تقريبا ، وهذا العلم يعنى بدراسة الأحياء الدقيقة عموما من حيـ

الشكل والتركيب والخواص الفسيولوجية والمزرعية وأهميتها من الناحية الطبية والزراعية والتصنيعية.

 الألبان ومنتجاتها، التخمـرات المختلفـة، كهما أمكـن إنتاج الفيتامينـات والإنزيمـات والأحهـاض العضوية وغيرها من المنتجات الهامة والـلازمة لكثير من الصناعات.

ولقد وضعة هذه الحقيبة كمقرر تدريبي لمتدربي قسم تقنية التصنيع الغذائي وروعي فيها الآتي: ا- التعرف على مصادر التلوث.

Y- التعرف على شكل المستعمرات البكتيرية والخمـائر والفطريات. ץ- دراسـة بعض الاختبـارات الـتي تجـرى علـى بعض المنتجـات الغذائيـة للتأكـــد مـن مـدى صــلاحيتها لـلاستهلاك الآدمي.
غ- دراسة بكتريولوجيا المياه، والتعرف على كيفية معرفة التلوث من عدمهـ. 0- ميكروبيولوجيا الأغذية والتو كسينات الميكروبية. 7- ميكروبيولوجيا الألبان والميكروبات المرضية باللبن. v- البيئـات والمحاليـل والأدلـة المستتخدمة يٌ إجـراء الاختبـارات اللازمـة للكشـف والتـرف على الأحيـاء

الدقيقة.

أن تثــمل هـذه الحقيبـة أحـدث الطـرق المستعملة يٌْ دراسـة الميكروبيلوجيـا مـن الناحيـة العلميـة ، كهــا زودناه بكثير من الأشكـال والجداول التي تفيد يٌِ الحياة العملية. والله ولى التوفيق.

الأحياء الدقيقة في الأغلية

الاحتياطات الواجب اتباعها

الوحدة الأولى
 الاحتيـاطات الواجب اتبـاعها في منحتبر الأحيـاء الدقيقة في الأغلذية

1- يمنـع التـدخين أو الأكل أثناء العمـل وبالمختبر حيـث ان أيدي القائمـين بالعمـل هـن حيـث نـزع الســدادات القطنيـة أو رج العينـات أو أخـذ العينـة بواسـطة الماصـات قــد تتلـوث بالبكتريـا وعليـه فـإن التـدخين أو الأكل بهتل هذه الأيدي هي إحدى وسـائل نقل البكتريا إلى الإنسـان وجهازه الهضمي أو التتفسي. ץ- يجـب تجنـب وضـع الماصـات المسـتعملة علـى المنضــدة أو لمس هــذه الماصـات باليــد حيـث أن سـطـحها
الخارجي دائمـا وأبدا مـا يكون ملوثاً بالميكروبات التي نقلناهـا بها.
ץ- يجب أن تكون سطوح طاولات المختبر ملسـاء وذلك لسـهولة وفعاليـة تعقيمها.

ع- يجب غسـل الأيدي بهـحلـول مطهـر أو بالمـاء والصـابون جيـداً وتجفيفهـا ويجـب أن تكـون الأيـدي جافـة

أثنـاء العمل

- - يستعمل خـلاط ذو غطاء محـكم دائمـا لخلط العينـات حتى يتجنب نتر أجـزاء مـن العينـة بالعهـل والـتي
قد تكـون إحدى مسببـات الأمراض.

7- يجـب تفطيـة منطقـة العهـل علـى طـاولات المختتبر بـأوراق لها قابليـة الامتصــاص أينهـا يكـون احتهـال انسـكاب المحاليل التي تحوي البكتريا المرضية أو سمومها.

V- V تغمر كافة الماصـات التي استخخدمت يٌ نقل مواد العدوى أو السـموم أو الميكروبـات فِّ محلـول معقـم وقاتل لـلأحيـاء الدقيقـة وهـن ثم تتقـل إلى محلـول الغسـيل وأخـيراً بواسـطة جهـاز التعقيم تحـت درجـات

عالية هع كافة اللوازم المستتخدمة لتلك الأعمـال ومن ضمنها بالطو المعمل

التعرف على الأجهزة المستخلدمة في مختبر الأحيـاء الدقيقة

الكائنات الحية الدقيقة هي مجموعة من الكائنات الحية متتاهية پٌ الصغر لاترى بالعين المجردة حيث يقل حجمها إلى درجة لا تستطيع معها العين المجردة رؤيتها، وهي عامة تتكون من خلية واحدة تقوم بجميع الوظـائف الحيويـة (الحركـة، التـنفس، التفذيـة، الإخـراج- الخ) لمـا كـانـت الكائنــات الحيـة الدقيقـة لا يمكـن مشـاهدتها بـالعين المجـردة، ومـع عظم تأتيرهـا على الإنسـان سـواء بـالنفع أو بالضـرر فكان لا بد من العمل على إيجاد الأجهزة والوسـائل التي تمكنتا من دراسـة هذه الكائنات الحية.

	أنواع الأحياء الدقيقة:
Y- الخمائر	1- البكتريا
\&- الفيروسا	r- الفطريات

وتختلف هـذه الكانئـات الحيـة يٌٍ أنواعهـا وتركيبهـا وصـفاتها ، حيث منهـا النـافع للإلنسـان مثل بكتريا التخمر(صناعة منتجات الألبـان، منتجات الخبيز)، ومنها مـا هو ضار مثل البكتريا المسببة للفسـاد

$$
\begin{aligned}
& \text { (الغذائي، والمسببة للتسمـم الغذائي } \\
& \text { (1 الميكروسكوب المركب: }
\end{aligned}
$$

يسـتخدم للتعـرف علـى الكائنـات الحيـة الدقيقـة حيـث يقـوم بتـكبير صـورتها بهـا يمـكنـنـا مـن
دراستها والتعرف على صفاتها، وكيفية الاستفادة منها .

ا- العدسـة العينيـة:Eye piece وهـي الـتي تتبـت وِّ الطـرف العلوي يٌ أنبوب السـحب، وهـي عبـارة عن

> عدسة مركبة(أي تتكون من مجموعة من العدسـات).

Y- العدسة الشيئية: Objective piece وهى التي تثبت وِْ الطرف السفلي ٌِ أنبوب الســحب، وهـى عبـارة

عن عدسـة مركبـة أي تتكون من مجموعة من العدسـات) وهذه العدسـات ذات قوة تكبيرية مختلفة. ץ- المسرح:حيث توضـع عليها الشـرائح ومزودة بفتحة يِّ مركزهـا ليمـر فيهـا الضـوء، وذلـك حتى تكـون
ع- م- مصدر للإضاءة: عبـارة عن مصدر للضوء طبيعي أو مصدر كهربي.

إن معظم الدراســات الميـكروبيولوجيـة تعتهـد على المـزارع النقيـة أي الـتي ينــو بهـا نـوع واحــد مـن الكـائنـات الدقيقة، وهـذه تتطلب لنموهـا بيئات غذائية معقمـة. والتعقيم عبارة عن العمليـات التي مـن شـأنها قتل أو إزالة كل الكائنـات الحية الدقيقة من الوسط المراد تعقيمـه سواء كان ذلك الوسط بيئة غذائية أو محاليل مختلفة وأمـاكن أو مسطحات محـدودة يٌ أبعادهـا وأحجـامهـا. والأشـيـاء المعقهـة يمـكـن الاحتفـاظ بها على صـورة معقهـة طالمـا أمـكـن المحافظـة عليهـا مـن التلوث الخـارجي وعـادة يـتم التعقيم باتبـاع طـرق تعتمد على أسس فيزيائية أو كيميائية أو ميكانيكيـة. ومن هذه الطرق هي استخخدام الأوتوكـلاف. جهاز الأوتوكـلاف
عبـارة عن أسطوانة معدنيــة عـادة تصـنـع مـن الصـلب أو مـن سـبـائك هعدنيــة قويـة تتحمـل ضـغط قـــ تصل إلى•ّ رطل/ بوصة 「 على الأقل، لـه غطاء يقفل بإحكام بعد أن توضع بـه المواد المراد تعقيمها ، وبعـد التأكــد مـن احتـواء الجهـاز علـى المـاء إلى الارتفـاع المناسـب مـع تـرك الصـنبور مفتوحـا ثـم يوصـل التيـار الكهربي ويدفع بهه بخار الماء، وعندما يشاهد البخار خارجا بشدة من الصنبور فإن هذا يعني خلو الجهـاز من الهواء وامتالائة بالبـخار. عنـدئذ يقفل الصنبور جيدا ويترك البـخار ينضغط بداخل الجهاز حتى يصـل إلى الضنط المطلوب وهوها رطل/ بوصةويعرف ذلك بالاستعانة بالمانومتر المتصل بالجهاز.وبالتالي يصل درجة
 المواد المـراد تعقيههـا. بعـد انتهاء مـدة التعقـيم يغلق الجهـاز ويترك دون فتح حتى يـنخفض الضـغط بـداخل الجهاز.والشكل التالي يوضح صورة لـلاوتوكـلاف.

Microbiological incubator الحضـان الكهريائي
هو جهاز يستخدم وِّ تتمية البيئات الملقحة وذلك عن طريق التحكـَ يٌّ درجة الحرارة بواسطة

ع
جهاز يستخدم لتجفيف العينات، الأدوات المستخدمة وذلك للتخلص من أكبر قدر من الرطوبة.

الأحيـاء الدقيقة في الأغذية

مصادر التلوث هِ الأغذية

-
 التخصص
 مصادر التلوث في الأغدية
 الجلارة:التعرف على مصـادر التلوث ٌِْ الأغذية (التربة- الهواء- الماءـ الإنسـان- الكائنـات الحية).
 الأهلداف:
 ا- أن يقوم المتدرب بالتعرف على مصـادر التلوث المختلفة بعد إجراء الاختبارات الميكروبيولوجية Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها. الوقّت المتوقّع للتلدريب على الجلارة: سـاعتان

الوسائل المسـاعلدة:

ا- وجود مختبر لـلأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبـارات المختلفة.
Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. ץ- استخخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحية الدقيقة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام

ץ- تحتاج الجدارة الى التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم پِ الاختبار.

التلدريب المهلي الأول

انتشار الأحيـاء الدقيقةّ في الطبيهيةٌ (مصادر تّلوث الفذاء)

البيئـات المطلوبة:

Nutrient agar بيئة الأجار المغذي

تسـتخدم هـذه البيئـة للحصـول علـى مجـاميع معزولـة مـن البـكتريـا ، وهـي تعتبـر مـن أكثـر البيئـات الصلبة شيوعا يِ الأعمـال البكتريولوجية. وهى عبارة عن بيئة المرق المفذي مضـافا إليها الأجار.

الأدواتوالمواد اللازمة لتحضير البيئة

ا- لتر مرق مغذي بدون ضبط الـ pH.

Y- أجار أجار.
「- حلة ذات جدارين أو حمـام مـائي.
ع- دليل بروم ثيمول الأزرق.

- - صنـدوق مقارنة الألوان.

7- مححلول ص أ يد ا, ع، 9 ,ع.

V
طريقة العمل

1- تحضير المرق المغذي والذي يتكون من

مستخخلص لحمّجّم، ببتون• اجم، ومـاء مقطر • . . مل.

$$
\begin{aligned}
& \text { ولمدة } 0 \text { ادقيقة. } \\
& \text { Y- يوضـع لـتر مـن المـرق المــذي پِ الحلـة ذات الجـدارين ويضـاف إليـه } 0 \text { اجـم أجـار أجـار (الأجـار بنسـبة } \\
& \text {.(\%-1,0 } \\
& \text { r- تغلى البيئة حتى يذوب الأجار. } \\
& \text { ع- إضـافة قليـلا من الماء لتعويض الفاقد بالتبخير. } \\
& \text { 0- ضبط الـ pH إلى }
\end{aligned}
$$

طبقة بـين ورقتي ترشيح قِّ هذا المرشـح.

طريقة عمل الاختبـار

Y. صب أطباق بتري المعقمة بالأجار ويوزع الأجار ِِ هـذه الأطبـاق، وذلـك بتحريـك الطبق حركـة دائريـة بسـيطة باتجـاه عقـرب السـاعة وبعكســه، إلى الأمـام وإلى الخلف بحيـث ينتشـر الأجـار ويتوزع توزيماً منتظماً ويراعى عدم التحريك بقوة حتى لا يتلوث غطاء الطبق بالأجار.「. يترك الطبق ليبرد الأجار ويصلب. ع. بعد صـلابة الأجار يجرى مـا يلي: أ) ينثر قليل من التربة على سطح الأجار.

ب) بأيدي أحد العمـال يمسـح سطـح الأجار.

ت)بأحد الأوعيـة أو الأواني المستعملة يلمس سطح الأجار. ث)تتثر بعض العلائق على سطح الأجار

ج)يترك أحد الأطباق لمدة نصف سـاعة مـكشوفة للهواء. ح)يكتب على غطاء الطبق نوع المعاملة.

خ) يقلب الطبق بحيث يصير الغطاء إلى لأسفل والقاع إلى الأعلى حتى لا تتسـاقط قطرات الماء المتكشف يِّ الغطاء على سطح الأجار فيعمل ذلك على تداخل المجاميع البكتيرية فلا يمكن تمييزهـا.

د)توضع الأطباق بهذه الصورة يٌ الحضـان Incubator على درجةVr
وأنواع المجاميع النـاميـة على سطـح هذا الأجار.

ذ) بِدذلك تفـحص كل مجموعة على حدة وذلك بعد معرفة لون وشـكل وسـطح ونوع الحـافـة وانتشـار هــذه
المجاميع وذلك بصبغها بطريقة جرام وفحصها ميكروسـكوبيا.

التلـربب العملي

أمامـك بيئـة الأجـار المفـذى والمطلـوب اتبـاع الخطـوات المـذـكورة ســابقا لإجـراء الاختبـار، ثـم دون

النتائج سِّ الجدول التالي:

الانتثار	نوع الحـافة	شكل السطح	الشكل	اللون	نوع التلوث	\bigcirc
					التربة	1
					لمس أحد العمـال	r
					مسـح الأواني	r
					نثر بعض العـلائق	ε
					النفخ	0
					تـرك طبـق معـرض للهواء الجوي •r ق	7
					مسـح الطاولة	v
					طبق بدون معاملة	\wedge

أسئلة

الوحدة الثانية
مصادر التلوث في الأغدية
س1 :أكمـل العبارات التالية:
1- تتـكون بيئة المرق المغذى هـن-

- - - - -
- - - - - - - - - - - - - - -

ع - تعقـم البيئـة علـى درجـة حـرارة- - - - -

- - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -

سץ :اذكر مصـادر التلوث؟ مـع ذكر مثال على كل نوع؟

سץ: حاول رسم الأشكال التي حصلت عليها بعد الاختبـار؟

الأحياء الدقيقة في الأغذية

مواصفات المستعمرات البكتيرية

الجلارة:التعرف على المواصفات الخاصة بالمستعمرات البكتيرية.

الأهداف:

1- أن يقوم المتدرب بالتدريب على كيفية تحضير البيئات وتعقيمها جيدا.

ץ- أن يقوم المتدرب بالتعرف على شكل المستعمرات البكتيرية ووصفها باستخخدام الميكروسكوب المركب.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجـدارة بنسبة 90٪. الوقّت المتوقّع للتلدريب على الجلارة: سـاعتان.

الوسـائل المسـاعلـة

ا- وجود مختبر لـلأحياء الدقيقة مجهز بجـيع الأدوات الـلازمة لإجراء الاختبـارات المختلفة.

Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. r- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحية الدقيقة.

متطلبـات الجلارة:

ا- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحيـاء الدقيقة التي قام

بتتميتها.

ץ- تحتاج الجدارة إلى التدريب مسبقا على كيفية استخـدام الأجهزة التي تستخدم وٌ الاختبار.

مواصفات المستعمرات البكتيرية

تتمى البكتريا عادة على بيئات خاصة وتستعمل البيئة لأغراض عديدة فتستعمل لحفظ الميكـروب واستكثاره ودراسة خواصه الفسيولوجية وتشتجيعه على إنتاج مواد تستعمل يٌ الأغراض الصناعية كإنتاج الكححولات والأحمـاض العضنوية وخـلافة. والتدريب التالي يعطينا معلومات حول هذه المستعمرات البكتيرية من حيث:

ا- الشـكل: دائري- اهليجي- مغزلـي- مثلـث الأقسـام- قوقعي- غيرمنتظم- شـكل الوردة-
جذري- خيطي(شكل^).

Y- التركيب: حبييي- متراكم- حبيبي خشن- ذو مناطق دائرية- شبكي- مغصن- مجعد- بـه مجاميع ثانوية.
r- الحافة: كاملة- هدبية- متموجة- مفصصة- ممزقة. ६- الارتفاع: مسطح- قطري- مرتفع- مدرج- مدحدب.

0- القوام:هش- صلب- لزاع الزي- مائي- ثقيل.
7- اللون: لون المجموعة ولون البيئة حولها.
V- الثفافية: نصف شفاف- معتم- شفافة.
^- الانتشار: لا حظ ما إذا كانت المجموعة منتشرة على سطح البيئة أو محدودة. 9- الحجه: يقاس قطر بعض المجاميع بالملليمتر پٌِ طبق يحتوي على عدد منها وتختلف المجـاميع مـن حيـث
 اليدوية أو الـ Binocular ارسم نماذج لبعض المجموعات التي ظهرت مـع مـلاحظة النقط السـابقة.

شكل(م)أشكال البكتريا

نهو البكتزيـا والتفيرات الكيماوية الحيوية التي تحلدثها في البيئـات المادية. البيئـات والأدواتوالمواد اللازمة:

Nutrient broth بيئة المرق المفذئي
أ- مكونات البيئة: مستخلص لحمّجم، بيتون• اجم، مـاء مقطر • • اسمץ. ب- طريقة التحضير:

ا- خلط المكونات.
Y- با غلي المكونات يٌِ الحهام المائي.
r- يسخن الحمام المائي حتى الغليان مع مـلاحظة أن يجب تعويض النقص يِّ الماء نتيجة التبخير.
\&- تترك البيئة حتى تبرد، ثم ضبط الـ pH الى VH أو V, V

0- الترشيح باستعمال مرشح بوخنر.
7- تعبئة البيئة थِ أنابيـب أو دوارق مناسبة وتغطى بسـدادات قطنيـة ثم تعقم هٌِ الاوتوكـلاف على درجـة
 Nutrient gelatin broth بيئة الجيلاتين المفلى الأدواتوالمواد اللازمة:
لـتر مـرق مغـني بـدون ضبط الـرقم الأيـدروجينى- جـيـلا تـين، حمـام مـائي- دليـل بـروم ثيمـول
 ستحاحات- أنابيب اختبار- قمع ترشيح- قطن. طريقة التحضير:

ا- ضع المرق المفذى يٌِ الحمام المائي ثم أضف إليه الجيلاتين بنسبة 10٪. Y-r- أخف الماء لتتويض الفاقد بالتبخير.

ع- اضبط الـ pH الى, الـ
0- رشتح البيئة وهى سـاخنة وِّ قمع بوخنر.
 V- عقم پٌ جهاز الأوتوكـلاف بالتعقيم المتقطع مدة• د دقيقة على آيام متتالية.

Nutrient agar broth slant ب- بيئة الأجـار المفلّى المائل
التحضير مثل بيئة الأإجار الصلبة فيمـا عدا عند التعبئة تعبـأ كل أنبوبـة بواقـع 0 مـل ثـم تعقـم وبعـد خروجها من جهاز الأوتوكالاف توضع يِّ وضع مائل حتى يتصلب الاجار. ع- بيئة لبن دوار الشهس Litmus milk الأدوات والمواد اللاززمة:

لـبن فرز(مجفف) • • اجم، دليل عباد الشمسا جم، ماء مقطر • • ا مل تخلط المكونات معا ثم التعقيم یٌِ جهـاز الأوتوكـلاف على درجـة حـرارة متتالية.

0- بيئة أجـار الجلوكوز المميق

وتحضر كالآتي:
ا••يحضر ا لتر من بيئة الأجار المغذى المتعادل والمرشـح.
Y Y إضافة • إجم جلوكوز.
ץ متتالية.

7- المزارع السـابقة التي حصلت عليها من الدرس السـابق.
طريقة العمل
ا•لقح هجموعة البيئات السـابقة بكل نوع من المزارع على حدة

1- بيئة المرق المغذي:

لاحظ تكـوين غشثـاء على السطح وهل الغشـاء مجعـد أم أملس أم جلـدي أم حلقي وهـل الغشـاء تحت السطح أم فوق السطح.

لاحظ مـا إذا كانت البيئة عكـرة أو رائقـة، هـل يوجــد راسـب أم لا. اختبر قـوام البيئة لوجود لزوجة من عدمـه باستتعهـال إبرة التلقيح.

- اختبر الرقم الأيدروجيني للبيئة وقارن ذلك ببيئة غير ملقحة.
Y- بيئة الجيـلاتين المغذي

تلقح هـذه البيئة بطريقة الوخز وتحضن وِوْ حالة عدم إسـالة الجيـلاتين يـلاحظ شـكل النمو فقد

يكون على هيئة كرات صغيرة متصلة. خيطي- سبحي- هعرج- هدبي- شـجري. ويِّ حالة إسـالة الجيـلاتين لاحظ شـكل الإسـالة فقد يكون إبريقي- فتجاني. r- بيئة الأجار المغذي المائل

- لاحظ اللون واللمعان والقوام والشفافية ولون البيئة.

ع- بيئة لبن تباع الشمس: لاحظ التفيرات الآتية:

لا تتغير 20 المظهر.

- تجبن.

تجـن مـع ظهور الشـر ش.
إذابة الخثرة لاحظ لون دليل تباع الشـمس كمـا لاحظ تكوين فقاقيع غازية من عدمـه.
0- بيئة أجار الجلوكوز العميق
لقح هـذه البيئة بالوخز.
لاحظ شكل النمو مثل ٍِِ بيئة الجيـلاتين.
لاحظ مـكان النمو فقد يكون سطحياً (هوائي) أو داخل البيئة عنــد القاعـدة فيكـون (لا هـوائي)
أو يِْ البيئة عموماً فيكون لا هوائيا اختيـاريا."
والثكل التالي يوضح شكل المستعمرات البكتيرية النامية على البيئة يِّ طبق بتري.(شكل؟)

شـكل(ケ) يبـين شكل البكتريا النـامية يِّ طبق بتري.

التلدريب العملي

أمامك البيئات التي قـت بتحضيرهـا وهى:-1- بيئة المرق المفذي.

Y- بيئة الجيـلاتين المفذي. r- بيئة الأجار المغذي المائل. ع-- - بيئة أجار الجلوكوز العميق.

والمطلوب اتباع الخطوات التي ذكرت وتدوين النتائج ٌِِ الجدول التالي:

التجبن	الثفافية	القوام	اللمعان	اللون	شك النمو	رقم الـ pH	حالة البيئة		تكوين الغشثاء	نوع البيئة	$\stackrel{\rightharpoonup}{2}$	
							عكرة	رائقة				
										 المغذى	1	1
										الجيـاتين المغذى	r	r
										الأجار المغذى المائل	r	r
										لبن دوار الثشس	ε	ε
										أجار جلوكوز عميق	0	0

0- المعقـــــ

7- الحضـان:-

Abstract

- -

\qquad
\qquad
^- دليل بروموكريزول بربل:-
ג

\qquad

\qquad
\qquad
\qquad

- - - - - - - - - - - - - - - - - - -

\qquad
\qquad
\qquad
\qquad
\qquad

الأحياء الدقيقة في الأغلية

الفطريات يٌٌ الأغذية

الجدارة:التعرف على المواصفات الخاصة بالفطريات.

الأهداف|

ا- أن يقوم المتدرب بالتعرف على مصادر التلوث المختلفة بعد إجراء الاختبارات الميكروبيولوجية Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها. r- أن يقوم المتدرب باستخدام الميكروسكوب بالطريقة الصحيحة. مستوى الأداء المطلوب:أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪. الوقتت المتوقع للتلدربب على الجدارة: سـاعتان.

الوسائل المساعلدة:

ب- ب- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.

Y- تحتاج الجدارة التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم پٌ الاختبار.

الفطريـات في الأغلّية

الفطريات تتمو على الطعام و يعرف ذلك بهظهرهـا الزغبي أو الوبري أو القطني التي تتلون थٌ بعض الأحوال، وقّد يتغير لونها إلى اللون الداكن، واللون ينتج لتـكشف الجـراثيم الملونـة وظهورهــا على السـطـح الذي ينمو عليه الفطر، وعادة الغذاء المصـاب بالعفن هذا يكون غير صـالح لـلأكل

وإذا تركت الفطريات بهذه الأطعمـة فأنها تتمو على سطحها وتسبب فسـادهـا.

الأدوات والمواد المستمهلة :
Malt agar ا- بيئة أجار المولت
1- مكونات البيئة: مستخلص المولت・ケجم،أجار •ץجم، مـاء مقطر • • امل.
تحضير البيئة:

$$
\begin{aligned}
& \text { 1- تغلي المكونات وِ حمام مائي بعد خلطها (لإذابة الاجار). } \\
& \text { Y- }
\end{aligned}
$$

ا 1 دقيقة.
Y- بيئة المولاسـا الصلبة:
مكونات البيئة:
عسل أسود• • جم، أجـار •ץجم، مرق مغذي• 97 مل.
طريقة التحضبر :

$$
\begin{aligned}
& \text { 1- تغلي المكونات بعد خلطها يْ حمام مائي. }
\end{aligned}
$$

 ب- محلول لاكتوفينول Lactophenol solution يتصـون محلول الـلاكتوفينول من: بلورات الفينول•ץ جم، حامض لاكتيك•ץ جم، جليسـرين،

- ع جم، مـاء مقطر • ع مل. وتخلط المكونات وتحفظ ِશْ زجاجات بنية اللون.أطباق بتربة معقمة. طريقة العمل :

1- سيح أنابيب أجار المولت وصبها يٌ الأطباق.
ץ- بعدأن تجمد البيئة افتح بعض الأطبـاق وعرضها للهواء مـدة0-1 دقـائق. ثم اقلب الأطبـاق واتركهـا على درجة حرارة المعمل لمدة أسبوع

ץ- خذ خمس إبـر مـن كل هـن الجـبن والزبـد والشـراب والمربـى...الخ الـتي أمـامـك، ثـم لقـح بهـا الأطبـاق المحتوية على البيئة والمحضرة كمـا يِّ رقم(1) وذلك بطريقـة التخطيط ثم اتركهـا على درجـة حـرارة المعمل لـلأسبيوع القادم.

ع- لاحظ نمو مجاميع الفطريات بالأطباق ثم خذ بالإبرة المعقمة المبللة بهحلول جليسـرين جـزءا هـن الفطر. يحتوي على ميسليوم وحامل الجراثيم والجـراثيم. 0- ضـع هـذا الجـزء وِنقطـة مـن محلـول الـلاكتوفينـول على شـريحـة زجاجيـة وغطـه بغطـاء الشـريحـة ثم افخصها بالعدسـة الصغرى ثم الكبرى. ارسم مـا تراه وحاول تعيـين نوع الفطر ولاحظ الآتي: أ- الميسليوم:
مقسـم أو غير مقســم. ب- الجراثيم غير التزاوحية: كويندات أو سيرانجيوسبورز حجمها ، لونها ، شكلها ، إذا كانت خشنـة أو مسننة، تركيبها خلية واحدة أو اثــين أو أكثثر.

ج- أجسـام ثمرية:
إذا كانت سبورانجيوم لاحظ الحـجم، اللون والشكل والموضع.
إذا كانـت تحهـل كوينـدات إذا هـا كانـت واحـدة أو أكثـر مـن كوينديـة علـى الحامـل الكوينـدي بشـكل وتركيب السترجماتا، ترتيب الكويندات ومميزاتها إذا مـا كانت الكويندات ملتصقة معها. د- مميزات أخرى: مثل الستولين الرايزود Foot cell أو إذا كانت مكونة جراثيم كـلاميدية أو غيرها. هـ- ارسم عينات من الفطريات وذلك للتعرف على صفاتها (مستعينا بالأشكـال\& ، 7 ، 0)الموجودة بالصفـحة التالية)

Rhizopus nigrecans ششك(£) الشكل المجهري لفطر

Candida.sp شكل(0) الشكل المجهري لفطر

التتلريبب العملي

أمـامك البيئات التي قمت بتحضيرهـا
1- بيئة أجار المولت.
ץ- بيئة المولاسـا الصلبـة.

والمطلوب اتباع الخطوات التي ذكرت سـابقا ثم دون النتائج ٌِِ الجدول التالي:

الأجسـام الثمـرية			الجراثيم غير التزاوجية				الميسليوم		نوع المادة المستخخدمة -2ْ التلقيح	-
الموضع	الثكل	اللون	التركيب	الشكل	الحـجم	اللون	غير مقسى	مقسم		
									الجـن	1
									الزبد	r
									 طبيعي	r
									مربى	ε
									خبز رطب	0

الوحدة الرابعة
 -10.
 التخصص
 الفطريـات في الأغدية
 الأحياء الدقيقة في الأغذية

 أسئلة

 أسئلة}

س 1 : مـا هي الفطريات؟ ومم تتركب؟

سץ: لماذا يضبط الـ pH لبيئة الفطريات عند 0,0 ؟

سّا: ارسـم عينـات من الفطريات التي تحصلت عليها وتعرفت عليهـا تحـت الميكروســكوب وذلـك للتعـرف على صفاتها.؟

الأحياء الدقيقة في الأغذية

الخمائر وِّ الأغذية

الجدارة:التعرف على المواصفات الخاصة بالفطريات.

الأهداف:

الميكروبيولوجية.

Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.
ץ- أن يقوم المتدرب باستخدام الميكروسكوب بالطريقة الصحيحة. مستوى الأداء المطلوب :أن يصل الطالب إلى إتقان الجدارة بنسبة 9^٪.
الوقت المتوقع للتدريب على الجدارة: سـاعتان

الوسائل المساعلدة:

ץ- r- و- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام
بتتميتها.
Y- تحتاج الجدارة التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم پٌ الاختبار.

الوحلدةالخـامسة
 الخمائر في الأغذلية
 الخهـائر فطريـات تتبع عـائلات عديـدة وهـي تتـكـاثر بـالتبر عـم أو بالانقسـام الثــائي البسـيط أو

 بالتجرثم يٌ الأنواعاً التابعة للاسكوميسيتس Ascomycetes وأهمهـا مـا يتبع جنس Saccharomyces الجليسيرول وتوجد أنواع أخرى من الخميرة الكاذبة تسمى False yeast التي منها جنس Torulopsisوهي تحـدث تخمـرات غير مرغوب فيهـا ولكنهـا تستعمل صناعيا يٌِ بعض الأغراض الطبيـة كهمـا أن بعضـها يستعمل كفذاء.

وعمومـاً تتمو الخميرة يِ البيئات السـائلة على الصورة الآتية:
I. Film forming yeasts تؤكســد الأحمـاض العضـوية والســكريات والكحولات.
Y. Top yeasts تستعمل وِّ صناعة البيرة المسمهاة الـ Ale beer.「. الأدواتوالمواد اللاززة:

أ- بيئة خميرة تتحمل التركيزات العالية Osmophilic yeasts(بيون السكريات) ا- يحضر لتر من بيئة المرق المغذى ويضاف إليه السكر المراد اختبار تحلله (الجلوكوز- اللاكتوزالسكروز) بواقعه جم.

Y-r- تمـلا الأنابيب ويوضع بكل منها V مل مـع وضح أنبوبة در هـام. を- التعقيم هٌِ جهاز الاوتوكا ب- بيئة مرق الجلوكوز المغنى
مثل بيئة بيون السكريات مع إضافة سـكر الجلوكوزهمهم. ج- بيئة لبن دوار الشمس: ذـكرت سـابقا. د- دليل بروموثيمول الأزرق:

هـ- بيئة أجار عصير البرتقال المائل: تتكون من:-
تربتون• (جم، مستخلص الخمـيرة٪ جم، جلوكـوزع جـم، فوسـفـات ثــائي الصـوديومّ جـم، عصـير برتقال • • مل، أجار 0و ا٪ أجار أجار، مـاء مقطر • • مـل يحضـر عصـير البرتقـال بتسـخـين لـتر مـن العصـير
 بالإضافة إلى مـا سبق يجب أن تتوفر المواد الآتية: ا- مزرعة من خميرة (حقيقية) مثل الـ S . cerevisiae.

Torula r- ب- مزرعة من خميرة (كاذبة) مثل الـ r- بيئة مرق السـكروز المفذي بنسبة ، • •، •ع، 70 سـكروز. ع- عصير الكرنب (اللاهـانة). 0- مرق الـلاكتوز المغذي. 7طريقة إجراء الاختبـار

قم بتحضير البيئات السـابق ذكرهـا ثم استخدامها ֵِِ إجراء التتجارب التالية
ا- خمائر تميش تحت ضفطأسموزي مرتفع Osmophilic yeasts
أ) لقـح كـل مـن الأنابيـب المحتويـة علـى بيئـة مـرق الســكروز بنســبة ا٪، • ٪، • \&، 70 بـزرعـة مـن الـ مثـل Zygosaccharomyces sp ومجموعـة همـاثلـة مـن البيئـة السـابقة بمزرعـة خميرة الخباز S. cerevisiae ب) حضن الأنابيب السـابقة يِّ درجة حرارة المعمـل لمدة تتراوح منه- V يوم ثم لاحظ مقدار النمو وذلك بالتفير الظاهر يِّ البيئة وكذلك الغاز المتكون يِّ التركيزات المختلفة.

Film yeasts الخميرةالفشـائية
أ- لقح أنبوبة محتويـة على عصـير الكرنـب Sauer kraut juice (0 مـل) بخــيرة غشــائيـة وأخـرى بخــيرة قدر الرقم الأيدروجيني للعصير قبل التحضـين بواسطة pH-meter أو بواسطة ورق الرقم

الأيدروجيني.
ب- حضن الأنبوبتين ٌِِ درجة حرارة المعمل ولمدةVأيام لاحظ شـكل النهـو ورائحـة كـل مـن الأنبـوبتين ثـم قدر الرقم الأيدروجيني پِ العصير لكل أنبوبة.

Sugar fermenting yeast الخمـائر المخمرة للسكر
أ- لقح أنبوبـة مـن مـرق الجلوكـوز وأنبوبـة مـن مـرق الـلاكتـوز وثالثتة هـن بيئـة لـبن تبـاع الشــمس بــوع مـن الخميرة الكاذبة التي تخمر الـلاكتوز (Torula) ثم لقح مجهوعة أخرى من البيئـات الأخـرى بخمـيرة بيرة التي لا تخـهر الـلاكتوز.

ب- حضن الأنابيب على درجـة حـرارة المعهـل لمـدةY-0 يـوم ثـم اختبـره لـلآتي:النهـو، تكـوين الفـاز، هقـدار

६- الخميرة|الحقيقية: Ascospore Forming
Gorodkowa أو بيئة جور ودكوا Orange juice sugar slant أق بئة أجار عصير البرتقال المائل بنوع S. cerevisiae ونوع Zygosaccharomyces.

ب- حضن على درجة حرارة وللتزاوج ثم دون النتائج المتحصل عليها يِّ جدول.

التلدربب المهلي

أمـامك البيئات التي قمت بتحضيرها وهى:-
ا- مزرعة من خميرة (حقيقية) مثل الـ S . cerevisiae.
Torula r- مزرعة من خميرة (كاذبة) مثل الـ
 ع- عصير الكرنب (الـلاهـانة). 0- مرق الـلاكتوز المفذي.

Gorodkowa ب- بيئة جرودوكوا
والمطلوب اتباع الخطوات التي ذكرت ٌِْ الدرس العملي، وتدوين النتائج ٌِِ الجدول التالي:

الخهـأر الحقيقية	الخمـائر المخمـرة للسـكريات	الخهـأر الغشـائية	الخهـائر الأسموزية	وجه المقارنة	م
				النمو	1
				التغير ب2 البيئة	r
				تكوين الغاز	r
				الرائحة	ε
				رقم	0
				مقدار التغير ٌِ	7
				مقدار التعكير	v

- \boldsymbol{r}.-
-

الأحياء الدقيقة في الأغلية

بكتريولوجيا المياه

1- أن يقوم المتدرب بالتعرف على شكل البكتريا الموجود يو الماء ووصفها وإجراء العد الكلي.
ץ- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها.
r- أن يقوم المتدرب باستخخدام الميكروسكوب بالطريقة الصحيحة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبـة 90٪.

الوقتت المتوقّع للتلدربب على الجلدارة: سـاعتان.

الوسائل المسـاعلـة:

ا- وجود هختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة.

Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. r- استتخدام اللوحات التوضيحيـة المبينـة لأشـكال الكائنات الحيـة الدقيقة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرض على أنواع الأحياء الدقيقة التي

قام بتتميتها.

Y- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌِْ الاختبار.

بكتيريـولوجيـا الميـاه

تقدر صـلاحية المياه للشرب بأريع تحاليل هي:

تقدر فيها الجوامد الكليـة والعسـر المائي Hardness كـذلك يختبر الماء لأنواع مـن الكيماويـات المضرة للإنسـان مثل الرصاص السـام وأمـلاح الزنك.

r- الاختبـاراتالفيزيـيائية:

ويختبر فيها عما إذا كان بالمياه عكارة واللون والطعم والرائحة
r- الاختبـارات البيولوجية:
ويفحص فيها عن وجود الطحالب والفطريات والبروتوزوا وديدان النيماتودا، عذراء الحشـرات الـتي
تتمو على المياه.

६- الاختبـاراتالبكتزيولوجية:

وهي مههة يٌ تحديد مدى صـلاحية المياه للشرب ومدى إمكانية وجود الماء ملوثاً.
التقدير الكمي لبكتزيـا الميـاه:The quantitative examination of water
الطريقة المتبعة عادة للتقدير الكمـي البكتريولوجي المتبع يٌ اختبار الميـاه لا يعطي سـوى جـزء مـن العدد الكلي للبكتريا فيها إذ أن معظم الميكروربات الموجودة وِّ الماء التي لا تتمو على البيئـات المعمليـة
 بهجموعـة بكتريـا القولـون الـتي قـد تصـل إلى الميـاه عـن طريـق التـلـوث بهيـاه المجـاري أو بـالمواد البرازيــة. ولاختبار صلاحية عينة ماء لأغراض الشرب واستخدام المنزلي يٌ المصانع يجري عليها الآتي:

$$
\begin{aligned}
& \text { ا- عدد البكتريا الكلي يٌِ عينة المياه. } \\
& \text { Y- اختبار تلوث العينة بمياه المجاري. }
\end{aligned}
$$

تؤخذ عينة المياه وِّ زجاجة معقمة ويجب أن تمثل العينة مصدر المياه المطلوب فخحــة بكتريولوجيـا
 الحنفية باللهب ثم ترك الحنفية مفتوحة لمدة خمس دقائق قبل أخذ العينة. وتؤخـذ العينـة مـن الأنهـار والـترع

والبحيرات من تحت سـطـح المـاء وذلـك بغهـر زجاجـة العينـة مقفولـة تحـت سـطـح المـاء ثمر فتتح غطائهـا تحـت سـطح المـاء. يجـب أن يجـرى اختبـار الميـاه مباشـرة وإذا طـال الوقـت مـن أخــذ العينـة لإجـراء الاختيـار عـن سـاعات فيججب أن تحفظ العينة يِّ ثلاجة أو وٌِ صندوق خاص معد لتبريد وحفظ العينات.

عل البكتزيـا الكلي في عينة الميـاه:

البيئـات المطلوبة"

بيئة أجار التربتون والجلوكوز ومستخلص الخميرة

مقطر • • امل.

 رطل/بوصةץ لمدة0 ادقيقة.

الأدواتوالمواد الالازمة:
زجاجـة عينـة معقمـة.

- 7 أطباق بتري معقمة.

7 أنابيب اختبار تحوي كل منها على 9 مل مـاء معقم

- • ماصـاتا مل معقمة.
- 7 أنابيب من بيئة أجار التربتون والجلوكوز ومستخلص الخميرة.

طريقة العمل:
1- رج عينة الميـاه جيداً Y مرة.

ץ- اخلط الأنبوبة / / ا جيداً باستعهـال مـاصة هعقمة جديدة ثم انقل بواسطة هذه الماصة ا مل من هـه الأنبوبة إلى أنبوبة أخرى بها 9 مل ماء معقم فيكون التخفيف // •

ع- اخلط بمـاصة معقمـة جديدة محتويات الأنبوبة (تخفيف / • •) ثم انقل بواسطتها ا مل إلى طبق بتري، وكرر ذلك وِ丷 طبق آخر.

0- بنفس الماصة كرر مـا سبق ٌِِ الخطورة غ) من أنبوبة تخفيف|/ . .

$$
\begin{aligned}
& \text { 7- بنفس الماصة كرر مـا سبق من عينة الماء الأصليـة. } \\
& \text {-V اكتب على كل طبق التخفيف. }
\end{aligned}
$$

^- سيح أنابيب الأجار العميق ثم برد إلى • نمْ وصب كـلاً منها ٌِْ أحـد أطبـاق بتري السـابقة مـع مراعـاة شروط التعقيم وأغلق الأطباق جيدا واتركها حتى تتصلب.

 - ا- خذ المتوسط الحسـابي لكـل طبقين مـن تخفيف واحـد ثـم اضـرب يٌ مقلوب التخفيف فينتت عـد البكتريا الموجود يٌِ المل مل من العينة.

اختبـار تلوث العينة بميـاه المجـاري:

يعتبر الماء صالحاً للشرب عادة إذا كان خالياً من ميكروبات القولون بشـرط أن يكـون خاليـاً مـن المواد السامة ومجموعة القولون هـي ميكروبـات عصوية غير متجرثـــة. تحلل ســكـر اللاكتـوز مـع إنتـاج
 الماء يدل على تلوثه بيراز مثل هذه الحيوانـات ونظراً لأن الكشف عن الميك الميكروبات المرضية مـن الصـوبة
 المجموعة يٌ المياه فإن ذلك يدل على تلوثها بمياه المجاري واحتمال وجود ميكروبات مرضية وتكـون الميـاه

غير صالحة للشرب.

Presumptive test الاختيـار الاحتمالي
لاختبار وجود مجموعة القولون يجري ذلك الاختبار بتلقيح بيئة بويون اللاكتوز أو بيئة ماكونكى الما السائلة بعينة المياه المطلوب فحصها فإذا تكون غـاز حوالي ـ ا أو أكثـر مـن حجـم أنبوبة
 أخرى فإن نتيجة الاختبـار يكـون مشــكوكا فيـه وعلى ذلك تجـرى الاختبـارات الأخـرى. أمـا عدم وجـود
 اختبارات أخرى ولإجراء الاختبار الاحتمالي تتبع الخطوات الآتية:

ا. عينة المياه.
「. أنابيب فيها بيئة ماكونكي السائلة وتحتوي على أنابيب در هام.

「. بيئة ماكونكي السـائلة MacConkey, s bile salt broth

المكونـات:
ملح الصفراء OBile salt جم، سـكر لاكتوز• ا جم، ببتون•ّ جمّ، ص كله جم، مـاء مقطر
-•• سـم.
التحضير:
ا. تخلط المكونات مع الماء ثم تسخن يِّ حمام مائي للذوبان.
Y. ضبط الـ pH إلى عوV وترشـح ٌِِ مرشـح بوختر.「. إضافة الدليل (بروموكريزول بريل !٪)

ع. تعبأ الأنابيب بواقع• 1 مل وِّ كل أنبوبة هع وضـع أنبوبة در هـام
 طريقة المهل:

$$
\begin{aligned}
& \text { 1- لقح أنبوبة مـاكونـكي بهقدار امل من عينـة المياه. } \\
& \text { ץ- حضن الأنابيب على درجةV }
\end{aligned}
$$

ץ- اختبر الأنابيب لوجود حامض وغاز بعد
 ع- إذا لم يتـكـون غـاز بعـدیع ســاعة تعتبـر النتيجــة سـلبيـة ولا تجـرى أي اختبـارات أخـرى أهـا إذا تـكـون الغاز فتجرى الاختبارات التالية.

Confirmatory test الاختيـارالتحقيقي
إذا كان الاختبار الاحتمـالي سـابق الذكر مشـكوكاً فيـه بمعنى ظهور أي كمية من غاز بعد^ع سـاعة بعد التحضـين فيجب إجراء الاختبار التتحقيقي فيستعمل عادة إحدى بيئتين صلبتـين وٌ الاختبارالتحقيقي وهمـا:

1- بيئة Eosine methylene blue يرمز لها EMB.
. Endo agar بيئة
 A. بينهـا تظهر مجـاميع E. coli with metallic sheen aerogenes
 أحمر غامق وقد يكون أولاً لها لمعان معدني أمـا مجاميع A. Aerogenes فـلا يظهر لها المركـز الغـامق وتكون معتمة وردية اللون.

الأدواتو والمواد المستعملة:

ا- أطباق بتري تحتوي على بيئة Endo agar \& EMB. Y- Y- أنابيب ماكـونكي التي أظهرت اختباراً موجباً أو مشكوكاً فيها
 ६- مزرعة Aerobacter aerogenes عمرها

بيئة الايوسين مثلين بلو: Eosin methlene blue agar
تحضر هذه البيئة بإضافة كمية معلومة من اللاكتوز مـع صبغتين الايوسـين Eosine والمثيلين بلـو إلى الأجار المغني ثم يصب المخلوط يٌٌ أطباق بتري فيتوقف لون المجـاميع التـي تظهر على هـذه البيئة على العاملين الآتيـين:

ا- تفاعل الايوسين(وهي صبغة حامضية) مع المثيلين الأزرق(وهي صبغة قاعدية) لتكـون صبغة مركبـة ذات خواص حامضية أو متعادلة.
Y- تكـوين كميـة مـن الأحهـاض نتيجـة لتـخهـر اللاكتـوز مـن شـأنها خفض الـرقم الهيـدروجين مسـبـا امتصاص الصبغة المركبة على الخلايا المكونة للمـجموعة ويلاحظ أن الميكروبـات التي لا تخمـر اللاكتوز غالبـاً مـا تكـون شـفافة (لا لـون لها) إذ أن الصبغة المركبة لا تؤخذ على الخلايا يِّ وسط قلوي وإنما تظهر البيئة يٌ لون أحمهر.

بيئة أجارالايوسين والمثيلين الأزرق Eosine methylene blue agar

ببتون• (جم، فوسفات ثـائي البوتاسيومץ جم، أجار •ץ جم، مـاء. . 1 مل.

1- اخلط المكونات ثم اغلي حتى الذوبان ٌِِ حمام مائي مع إضـافة الماء لتعويض الفاقد بالتبـخير.
 ץ- عنــد الاسـتعهـال تسـيح البيئـة بالــدوارق وِ جهـاز الأوتـوكـلاف ثـم يضـاف إليهـا كــل مـن: ســـكر الـلاكتوزا جم، هحلول الايوسـين المائي ٪٪ مل، هحلول المثيلين الأزرق المائيهو• • او مل.
 أطباق بتري المعقمة.

طريقةّ العمل

ا- سيح بيئة EMB وبردهـا إلى درجة غ عْ قسـم قاع الطبق إلى قسـهـين بواسطة قلم شهع.
 بالخليط أي بالمزروعة التي أثبتت نتيجة موجبة وذلك بطريقة التخطيط. r- بعد فترة التحضن اختبر المجاميع ودون النتائج. بيئة أجـار إنلدو Endo agar المكونات

التحضير

$$
\begin{aligned}
& \text { 1- اخلط المكونات ثم اغلي حتى الذوبان يٌ حمام مائي } \\
& \text { Y- أضف ماء لتعويض التبخير } \\
& \text { r- امـلأ دوارق بواقع` • ا سـم لكل منها }
\end{aligned}
$$

 ا جم، كبريتيت الصوديوم0و٪ جم، ا مل محلول الفوكسـين القاعدي يٌْ الكحوله٪ ٪، ماء مقطر זمل. 7- رج الدورق ثم عقم پٌ أر نولد لمدةه دقائق. V-

يجرى هذا الاختبار عادة للتأكد أن مجاميع A. aerogenes, E. coli التي ظهرت على أطبـق EMB ا- أن الميكروب المعزول من الاختبار الاحتمالي يستطيع أن يخمر اللاكتوز ثانيـة.

ץ- أن المجاميع النامية على البيئتين السابقتين والتي تظهـر تحـت الميكروســكوب عنـد فـحصها بطريقـة جرام خلايا عصوية قصيرة سالبة لصبغة جرام غير متجرثمة فإنها تتبع مجموعة القولون.

الأدواتوالمواد اللازمة

ا- طبق يحتوي على بيئة E. M. B والتي ظهرت عليه مجاميع حقيقية، وغير حقيقية لمجموعة القولون.

$$
\begin{aligned}
& \text { Y- بيئة ماكونكي وبها أنبوبة درهام. } \\
& \text { r- أجار مغذي سـائل. } \\
& \text { ६- شرائح نظيفة } \\
& \text { 0- صبغة جرام. }
\end{aligned}
$$

طريقة العمل

ا- خـذ بواسـطة أبره معقمـة جـزءاً مـن مجموعة الـ Coli form الناميـة على بيئة E.M.Bولقح بها أنبوبـة ماكونكي وكذلك أنبوبة الأجار المائل.
 بطريقة جرام وافحص الميكروب (خلايا عصوية قصيرة، سـالبة لجرام وغير متجرثمة). ६- بعد ^^ سـاعة اختبر أنابيب ماكونـكي لوجود حامض وغاز.
0- يكون الاختبار التكميلي موجبا إذا كانت النتيجة إيجابية بالنسبة للخطوتين السابقتين(r، ع).
التفرقّة بين أفراد مجموعة القولون

مجموعة القولون: تشمل 「 تحـت مجاميـع هي
E. coli - -
(intermediate) E. freundii -ヶ
A. aerogenes -r

وتبين التفرقة على نتائج الاختبارات الآتية:
1- اختبار الإندول
Y- اختبار أحمر الميثايل
Voges-proskauer r- اختبار ६- اختبار السترات

يـلاحظ الآتي:
1•أن كل الميكروبات السابقة ٌِْ المحتمل تلوثها بالبراز.
ץ「•إذا حدث تلوث يٌ المياه من عدة مصـادر فمن المحتمل أن يوجد بهـا E. coli ولكـن إذا كـان التلوث مـن E. coli مصدر واحد خلاف البراز فقد يوجد هٌِ المياه الأنواع الأخرى بدون وجون
وفيما يلي هذه الاختبارات:

اختبـارالإندول
تستطيع بعض الميكروبـات أن تحلل الحـامض الأميني Tryptophane مـع إنتـاج مركبـة الأنـدول
وتستعمل هذه الظاهرة يٌٌ التعرف على بعض الميكروبات.
الأدوات:

r- أنابيب تحتوي على مرق التريبتون، الذي يتكون من:-

كيفية تحضير البيئة

$$
\begin{aligned}
& \text { أ- تذاب المكونات وِّ الماء ثم تغلى يٌْ حمام مائي (حتى يذوب الاجهار) } \\
& \text { ب- يعوض النقص بالتبخير بإضافة الماء. } \\
& \text { جَ- ضبط الـ pH إلى v، ثم رشح يٌ القطن. }
\end{aligned}
$$

د- يعبأ ويعقم على Y أْ م وتحت ضغطه ا رطل/بوصة مربعة لمدة 10 دقيقة. ع- ورق حامض الاكسـاليك.

0- دليل ارليك بوم Ehrlich- Bohme وهو يتكون من محلولين:
دحلول (أ)
90 مل كـحول90٪ Paradimethyl amino benzaldhyd جمه، حامض الايدروكلوريد مركـز•ץ مـل، يذاب الألدهيد پِ الكحول ثم يضاف الحامض مع التقليب المستمـر. محلول (ب)
محلول مائي مشبع من فوق كبريتات البوتاسيوم. يخلط المحلولان (أ ، ب).
طريقة العمل:
ا- لقحّ أنابيب مرق التريبتون بميكروبE. Coli ومرة أخرى E. aerogenes.
ץ- خذ أنبوبة من الأنابيب الملقحة بكل مـن A. aerogenes ،E. Coli وضـع لكـل منهـا ورقـة حـامض الأكسـاليك التي تثبت پِ الغطاء القطني. r- ضـ الأنابيب پٌِ الحضـان على ع- بعد فترة التحضـين اختبر الإندول.

طرق الكشف عن الإندول

1- طريقة حامض الاكسـاليك:
إذا تـكون الإنـدول فْإن ورق حـامض الاكسـاليك يتلـون بـاللون الـوردي إذا أن الإنــول مـادة طيـارة.
فإذا تكونت بفعل الميكروب فإنـه يتحـد مـع بلورات حـامض الاكسـاليك مـكونـاً لونـاً ورديـاً ويعتبر هــذا الاختبار خاص لـإندول.

Ehrlich Yريقة
خذ أنبوبة لكل من الأنابيب الملقحة بكل مـن الميكروبين A. Coli وAerogenes . . المحضنة
 أحمر وردي پِ丷 حالة وجود الإندول.

قد يجرى اختبـار الإنـدول بوضـع بضـع نقـاط مـن محالـول.Ehrlich A. B علـى قطعـة قطـن مـاص ثـم وضـع قطعة القطن داخل الأنبوبة بحيث تعلو على سـطح المزرعة بهقدارrّ- ع سـم ثم توضـع الأنبوبـة يٌ مـاء
 مـع الدليل ويجب عنــد إجـراء الاختتبـار اسـتعهـال بيئـة خاليـة مـن الكـربوهيـدرات وإلا فــلا يمـكـن الاعتمـاد على النتائج.
r- اختبارأحمر اليثيل
يعتبر اختبار أحمر الميثايل كدليل على كمية الحامض المتكونة بواسطة أفـراد مجموعة الـ Coli فتمند تخمر كمية معلومة من الكريوهيدرات فإن E. Coli تتتج كميـة من الحـامض أكثر مـن وعلى ذلك يستعمل هذا الاختبار للتمييز بينهما فالأولى تتتج كمية من الحامض كافية
 فيظل لوناه أصفر.

الأدواتوالمواد المستعملة

ا- مزرعة E.coli يٌِ بيئة المرق المغنى وعمرهاءץ ساعة. Y- مزرعة A. aerogenes يٌ بيئة المرق المغذى وعمرهاءץ ساعة. r- أنابيب بويون الجلوكوز(مرق الجلوكوز المغذى). \&- دليل احمر الميثيل.

كيفية تحضير البيئة: تم ذكرهـا سـابقا.
طريقة العمل
ا- لقح أنبوبة من بيئة الجلوكوز بهيكـروب E.coli/الأنبوبة الأخرى بميكروب A. aerogenes واترك
أنبوبة بدوت تلقيح.

r- أضف 0 نقاط من دليل أحمر الميثيل إلى كل أنبوبة ثم امزج جيدا.

> وجود لون أحمر يدل على أن الاختبـار موجب بينمـا اللون الأصفر يدل على أن الاختبار سـالب.
> §- اختبـارالـ Voges-proskauer test

ينشـأ مـن عمليــة التحويـل الغـذائي لـبعض المركبـات تـكوين مـواد الغـرض منهـا معادلـة الأحهـاض
النـاتجة حتى يتفادى الميـكروب الوسـط الحامضي مثل استيايل ميثايل كاربينول وتعتبر هذه العملية عمليـة
تعادل Neutralization mechanism ويمكن الكشف عن هذا المركب باختبارV.V. P.
ويسـتخدم هـنا الاختبـار للتمييـز بـين E.aerogenes,E. coli لأن الثانيـة تكـون اسـيتايل ميثيـل كــاربينول بينهـا الأولى لا تكـونـه ويعتـبر هــنا الاختبـار عكس الاختبـار السـابق والاســيتايل ميثايـل كاربينول بوجود الصودا الكاويـة والهواء الجـوي يتأكســد إلى Diacetyl الـــي يعطي Alphanaphthol والحـامض الأميني الأرجنـين الموجود بالببتون (الموجود بالبيئة) اللون الأحمـر.

الأدواتوالمواد المستعملة

1- مزرعة E. coli يِّ بيئة المرق المغذى وعمـرها Y- مزیرعة A. aerogenes بِيئة المرق المفذى وعمرهـاءץ سـاعة. r- أنابيب مرق الجلوكوز والفوسفات والببتون. ع- محلول الألفانفثول أو مسـحوق الكرياتين. 0- محلول ص أ يد أو بوأ يد •६٪.

كيفية تحضير البيئة

تخلط المكونات ثم تغلى يِّ حمـام مـائي. ترشـح بواسطة قهع بوخنر وتعبأ ثم تعقم لمدة•ץ دقيقـة ولمـدة ثـلاث أيام متتالية.

محلول الألفانفثول: الفانفثول0 جم، كحول90 ٪ ويكمل إلى • . ا سه٪٪.
طريقة العمل
A. aerogenes وأخرى من مزرعة E.coli وأتح أنبوبة مرق الجلوكوز والفوسفات والببتون من مزرعة والأخرى بدون تلقيح للمقارنة.

ץ- حضن الأنابيب على ک
ץ- بعد التحضـين أضفا سـمّ من ص أ يد وبضـع نقط من الألفانفثول أو مستحوق الكرياتين ثم امزج واترك الأنابيبץ - ع سـاعة ثم اقرأ النتيجة.

النتيجة: يتكون لون أحمر على السطح وِّ حالة مـا إذا كان الاختبـار موجبا.
0- اختبـار تمثيل السترات
يستطيع A .aerogenesوبعض (intermediate) أن يستخخدم سـترات الصـوديوم كهصــر وحيـد
للك فيدل ذلك على أن الميكروبات هي A. aerogenes وعدم مقدرة E. coli على النهـو پٍِ بيئة السـترات ويستتخدم هذا الاختبار للتفرقة بينها ويسهى هـا الاختبار باختبار كوزر.

الأدواتوالمواد المستعملة
1- مزرعة E. coli يِّ بيئة المرق المفذى وعمرهـا \& ץ- مزرعة A. aerogenes يٌ بيئة المرق المفذى وعمـرهـا بץ سـاعة. r- أنابيب تحتوي على بيئة السترات.

كيفية تحضير البيئة:
فوسفات الأمونيوم والصوديوم0, ا جم- فوسفات بوتاسيوم أحادى الأيـدروجين اجـم - كبريتـات
 أنابيب اختبـار وتعقم على 10 رطل لمدة10 دقيقة.

طريقة العمل

ا- لقح أنبوبة من بيئة السترات من مزرعة E. coli وأخرى من مزرعة A. aerogenes والثالثة بدون تلقيح للمقارنة.

Y- حضن الأنابيب على VYْ م لمدةغأيام ץ- بعد فترة التحضـين نشاهد النمو مـن عدمـه.

الريدةالسادسة كولوجيا اليمياه	0.01صنع الأجياء الدقيقة في الأغذية			
أمـامك عينة من الماء والمطلوب إجراء الاختبارات عليها للتأكد من نقاوتها وصـلاحيتها للاستهـلاك الآدمي. 1- قم بتحضير البيئات الـلازمة لللاختبار(ذكرت سـابقا).: Y- قـم باتباع الخطوات المذكورة يِّ الدرس العملي. اولآ :اختبـار تلوث العينـة بمياه المجـاري				
الاختبار التكميلي	الاختبار التحقيقي	الاختبار الاحتمالي	حالة البيئة	$\stackrel{ }{ }$
			تكون غاز	1
			لا يتكون غاز	r

ץ- قـم بـإجراء مقارنـة بـين A. aerogenes ، E.Coli، دون النتائج الـتي تحصـلت عليهـا مـن الاختبـار بوضـع علامـة (=) إذا كـان الاختبـار سلبياً ، علامـة (+) إذا كـان الاختبـار موجباً.

A. aerogenes	E.coli	اختبار	م
		الأندول	1
		أحمر المثيل	r
		اختبار فوكس- بروسكوير .V.P))	r
		السترات	ε

الأحياء الدقيقة في الأغذية

الإنزيمات البكتيرية

الإنزيمات البكتيرية

> اسه الوحلدة:الإنزيمـات البكتيريـة.

الجلدارة:التعرف والكشف عن الإنزيمـات التي تتتجها البكتريا.

الأهل|ف:

$$
\begin{aligned}
& \text { ا- أن يقوم المتدرب بالتعرف على نواتج التحلل الإنزيهي النـاتج عن فعل البكتريا ووصفها. } \\
& \text { Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها. } \\
& \text { r- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصحيحة. } \\
& \text { مستوى الأداء المطلوب:أن يصل المتدرب إلى إتقان الجـدارة بنسبة^9٪٪. } \\
& \text { الوقتّ المتوقتِ للتلدريب على الجلدارة:سـاعتان }
\end{aligned}
$$

الوسائل المسـاعلة:

ا- وجود مختبر لـلأحياء الدقيقة مجهز بجـيع الأدوات الـلازمة لإجراء الاختبـارات المختلفة. Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي. r- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحية الدقيقة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام

بتتميتها.

Y- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم يِّ الاختبار.

الوحدة السابعة مصادر التلوث في الأغدية	－10． الأجياء الدقيقة في الأغلية	التخصص تقنية التصنيي الغذائي
الإنز يمـات البكتيريةّ		
تفرز البكتريا عند نموها يٌِ بيئة إنزيمات خاصة تقوم بتحليل محتوياتها لكي يسـهل امتصاصها وتمثيلها．ونتيجة لعملية التمثيل تتكون مواد ثانوية بالبيئة．ويوجد نوعان من الأنزيمات وهمـا ：		
تا إلى الخـارج تختلف فر عليها．	خــة وعنـد موتهـا وتحـلا الأنزيمـات ويعتبر ذلل	كـتريا كثيرا و وإنزيمات داخ

تحليل النشا

النشـا مادة كريوهيدراتية مـكونة من تجهع الجلوكوز Polymer ومصـدره النباتات وهو غير قابل للذوبان يٌ الماء وعلى ذلك فهو ليس يِّ متتاول البكتريا．ولبعض الميكروبات القدرة على تحليل النشـا وذلك بإفرازهـا إنزيمـاً خارجيـاً يــرف بـالاميليز（دياسـتيز）الــني يحلـل جـزيء النشـا النـروي إلى مـالتوز ويسـتطيع المالتوز أن يدخل خـلايا البكتريا حيث يتحلل بفعل أنزيم داخلي مـالتيز Maltase． تقسـم الميكروبات من حيث تحليلهـا للنشنـا إلى قسـهـيـن قسـم قادر على تحليـل النشــا وآخـر غير قـادر على هذا التحليل وتعتبر هذه الخاصية هـامة يِ التعرف على الميكروبات．

وفيمـا يلي طريقة إجراء الاختبار：
الأدوات والمواد اللازمهة

$$
\begin{aligned}
& \text { 1•أنابيب أجار النشا العميق. } \\
& \text { Y• 「أطبـاق بتري معقمـة. } \\
& \text { F. } \\
& \text {.B. subtilis •مزرعة } \\
& \text { • •محلول اليود. } \\
& \text { طريقة العمل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Y- لقح أحد الأطباق بعمس إبرة التلقيح من مزرعة E. coli يٌ وسط الطبق. } \\
& \text { r- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ع- حضن الأطباق لمدة^ع سـاعة على درجةV } \\
& \text { 0- بعد فترة التتحضين اغمـر كل طبق بهحلول اليود. }
\end{aligned}
$$

يـلاحظ تكـون هـالة عديمة اللون حول مجموعة الميكروب المحلل للنشـا.وقد تظهر بلون أزرق أولا
تظهر هذه الهالة يِّ حالة الميكروب غير المحلل للنشـا.

تتليل الجييلاتين

 والجيلاتين إذا أذيب وِّ الماء فإنه يـكون محلولاً غروياً صلباً، وحيث إن الجيـلاتين مادة بروتينية فإن كثيراً من الميكروبات تحلله فيفقد بذلك قدرته على التصلب ويصبح سـائلا والأنزيم الذي يحلل الجيلاتين يسـمى الجيلاتينيز Gelatinase وهو أنزيم خارجي تجدر الإشـارة إلى أن بيئة الجيـلاتين المغذى لها خاصية التصلب Hydrogel على درجـة أقل مـن ماْم ويتحول إلىHydrosol الحالة السائلة على درجة الحرارة أعلى منمبَ مْ ويجب أن لا تا تحتوي البيئة على مـادة كربوهيدراتية سهلة التبخر إذ أن الأنزيم المحلل للجيـلاتين لا يفرز يٌ وجودهـا عادة. يعتبر اختبار تحليل الجيلاتين من الاختبارات الهامة هٌِ التعرف على الميكروبات وتعتبر الميكروبات المحللة للجيـاتين ميكروبات محللة للبروتينات Proteolytic وفيما يلي طريقة إجراء الاختبار:
B. subtilis or Proteus vulguris ا- مزرعة
E. roli مزرعة

ץ
طريقة العمل
B. subtitles or Proteus sp. ا- لقحبأنبوبة من بيئة الجيـلاتين المفذى العميق بطريقة الوخز من هزرعة

r- اترك الأنبوبة الخامسـة بدون تلقيح للمقارنـة

0- بعد فترة التحضين انقل الأنابيب إلى ثلاجة أو ضعها يٌِّ كـأس بها مـاء مثلج لمدة نصف سـاعة ثم دون مـا تشـاهده

النتيجةة

إذا تجـمد الجيـلاتين فإن ذلك يدل على قـدرة الميكروبات على تحللـه ولكـن إذا أسـيـل الجـيـلاتين فـإن ذلـك يدل على تحلله.

ملحوظة

قـد يجـرى الاختبـار السـابق باسـتعمـال بيئـة الأجـار المفـنـي المحتـوي علـى • ٪٪ مـن بيئـة الجـيـلاتين المغذي. فيسيـح الأجـار ويبرد إلى • 0 م ثـم يصـب المـراد اختيـارهـا لهـذه الخاصـيـة وبعـد فـترة التتحضــين تغهـر الأطبـاق بهـحلـول مـكون مـن0 اجـى HgCl_{2} و -ץجرام HCl

فالميكروب المحلل للـجيـلاتين تظهر حوله هـالـة رائقـة بينهـا بـاقي البيئـة تكـون ذات لـون معتـم، ولا تتكون هذه الهالة الرائقة حول الميكروبات غير المحللة للجيـلاتين.

التلدريب العملي

أمـامك البيئات التي تم تحضيرهـا لإجراء الاختبـار للكشف عن مدى حدوث تحلل لكل من: 1- تحلل النشا. Y- تحلل الجيـلاتين. دون نتائج الاختبار يٌ جدول.

تحلل الجيـلاتين	تحلل النشـ	مظاهر التفير بِ البيئة
		تكون هالة حول الميكروب
		لون الهالة
		تجمد الجيلاتين من عدمها

أسئلة

س ا:أكمل العبارات التالية:-

الأحيـاء الدقيقة في الأغذية

إنزيمات التحلل المائي

اسم الوحلدة:تابع إنزيمـات التححلل المائي.
 الجلدارة:التعرف والكشف عن الإنزيمـات التي تتتجها البكتريا.
 الأهداف:

ا- أن يقوم المتدرب بالتعرف على نواتج التحلل الإنزيهي النـاتج عن فعل البكتريا ووصفها. Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها.

ץ- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصـحيحة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 9^٪٪. الوقتّ المتوقِّ للتلدربب على الجدارة: سـاعتان.

الوسـائل المسـاعلدة
ا- وجود هختبر لـلأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة.

Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي. r- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـاتا الجلارة:
ا- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحيـاء الدقيقة التي قام بتتميتها.

Y- تحتاج الجدارة التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم وِ الاختبار.

الكــازين عبــارة عـن فوسـفوبروتين وهــو الجـزءء البروتينـى الــرئيس وِ اللــبن، تسـتطيع بعـض
الميكروبات أن تحلل الكازين إلى مشتقات قابلة للذوبان ويعرف ذلك باسـم الـ.Patronization
والأتزيم الذي يحلل الكازين يسهى كـازياز Casease وهو أنزيم خارجي ويمكن إثبات وجود هذا الأنزيم بتلقيح الميكروب بطريقة التخطيط على سطـح بيئة أجار اللبن فإذا تكونـت هـالـة رائقـة حـول النهـو البـكتيري فـإن ذلـك يـدل علـى إفـراز الأنـزيم. تسـتطيع بعض الميـكروبـات إفـراز أـنزيم الكـازيـاز والـبعض الآخر لا يستطيع ذلك ويعتبر هـذا الاختبار هـام وِن التعرف على الميـروربات

الأدوات والمواد اللازمهة

ו- لبن فرز معقم r-
r- أطباق بتري معقمة
ع- مزرعة

- م- مزرعة B. subtitles

Streptococcus lactis 7- مزرعة

طريقة العمل

ا- سيح ثلاث أنابيب أجار عميق ثم بردها إلى درجة • مْ م.
 وحرك الطبق لكي ينتشر اللبن يِّ الأجار وبانتظام ثم اترك البيئة لتجمد. Y- لقح بالتخطيط كل طبق بأحد الميكروبات الثلالاثة.
 0- اختبر الأطباق لوجود هالـة رائقـة حول المجـاميع ثم اغمـر الأطبـاق بهحلول • HCl H فإذا ظلت الهالة الرائقة موجودة فإن ذلك يدل على أن الميكروب يحلل الكــازين. أمـا إذا كـانت الهالـة الرائقـة موجودة ثم اختفـت بعـد إضـافة الحـامض أو لم تكـن موجـودة أصــلا فإن ذـلك يـدل علـى أن الميكـروب غـير محـلـل

$$
\begin{aligned}
& \text { •الونع } \\
& \text { 7- لاحظ أيضاً رائحة الأطباق خصوصاً التي بها تحلل للكازين حيث تظهر رائحة غير مرغوبة } \\
& \text { تّحليل الدهوز } \\
& \text { لبعض الميكروبات القدرة على تحليل الدهون وينتج عن ذلك تزنخها أو فسـادهـا. وينتج عـن التحليـل } \\
& \text { الجليسـريدات ذات الـوزن الجزنـي المـنخفض جليسـرين وأحهـاض دهنيــة طيـارة أهـا الجليسـريدات العاليـة } \\
& \text { فتتحلل إلى جليسـرول وأحمـاض دهنية. } \\
& \text { 1- أطباق بتري معقمة. } \\
& \text { r- } \\
& \text { r- أنابيب أجار مغذي عميق. } \\
& \text { ع- هـحلول كبريتات النحاس. } \\
& \text { - - مزرعة Pseudomonas flourescens. } \\
& \text { Y- } \\
& \text {. B.subtilis - منرعة } \\
& \text { ^- د- مزرعة Pencillium. } \\
& 9 \text {-زيت بذرة القطن المعقم أو زبدة معقمة } \\
& \text { طريقة العمل } \\
& \text { 1- سيح أنابيب الأجار العميق ثم برد إلى } 0 \text { مْم }
\end{aligned}
$$

ץ ب- انقل بهـاصة معقمة مقدار اسـمَّ من الزيت أو الزبـد المعقـم السـايح إلى أنبوبـة لـلأجـار ثمَ رج جيـداً حتـى يتكون مستحلب ثم صب الأجار ٌِِ طبق بتري معقم واتركه حتى يتجمد.
 أمـامك

ع- حضن الطبق على درجةVrّم ملمدةr- ع أيام. 0- بعد فترة التحضـين أغمر الطبق بهححلول كبريتـات النحاس. لاحظ مـا تشـاهده. النتيجة
يشاهد لون أخضر مزرق حول وتحت المجاميع المحللة للدهون وذلك نتيـجة لاتحاد الأحماض الدهنية
النـاتجـة عن تحلل الدهن مع كبريتات النحاس

التلدريب العملي

أمـامك البيئات التي تم تحضيرهـا لإجراء الاختبار للكشف عن مدى حدوث تحلل لكل من:
ץ- ب- تحلل الكازين.

دون نتائج الاختبـار ٌِِ جدول.

تحلل الدهون	تحلل الكازين	مظاهر التفير فِ البيئة	\bigcirc
		تكون هالة حول الميكروب	1
		لون الهالة	r
		تكون رائحة	r

أسئلة

س ا : أكمل العبارات التالية:
1- الكازين عبارة عن-ب- الإنزيم المحلل للكازين هو -r- يتعرف على وجود إفراز للإنزيم بتكــ ६- ينتج عن تحلل الدهون-

0- يتعرف على تحلل الدهون بتكون لون- - - - - - -
سץ : مـا هو تفسيرك للنتائج التي تحصلت عليها پٌِ الجدول؟

الأحيـاء الدقيقة في الأغذية

الاختبـار البـكتريولوجي للفواكة

اسه الوحلة:الاختبار البكتريولوجي للفواكه المجففة.
الجلارة:التعرف والكشف عن الميكروبات التي توجد ٌٌِ الفواكه المجففة.
الأهداف:

ا- أن يقوم المتدرب بالتعرف على نواتج التحلل الإنزيمي النـاتج عن فعل البكتريا ووصفها. Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها. r- أن يقوم المتدرب باستخـدام الميكروسـكوب بالطريقة الصـحيحة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجـدارة بنسبة ه^9٪. الوقتت المتوقتع للتلدريب على الجلدارة: سـاعتان.

الوسـائل المساعلةة:

ا- وجود مختبر لـلأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة. Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. r- استتخدام اللوحات التوضيحية المبينـة لأشـكال الكائنـات الحية الدقيقة.

متطلبـات الجدارة:

ا- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.

ץ- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ِِْ الاختبار.

الاختبـار البكتزيولوجي للفواكه المجففة

تحتوي الفاكهة المجففة پٌ العادة على أعداد مختلفة مـن الفطريـات والخهـائر والبكتريـا ولكنهـا غير نشطة نظراً لارتفاع نسبة السكر ٌِ هذه الفواكه ولعدم وجود الرطوبة الكافية.

$$
\begin{array}{r}
\text { ץ- }
\end{array}
$$

0- بيئة أجار الجلوكوز ومستخلص الخميرة.
7- بيئة مرق اللاكتوز المحتوية على دليل بروموكريزول بريل -V بيئة مرق الجلوكوز ومستخلص الخميرة. ^- بيئة أجار المولت.

طريقة العمل

أ- تقدر عدد البكتريا بطريقة الأطبـاق:
ץ- أوزن مقدار • اجهم من الفاكهة المجففة تحت ظروف التعقيـم ثم انقلها إلى •qسـمَّ مـاء معقم، اتركها لمدة •1-10 دقيقة ثم رج بشـدة.

 الجلوكوز ومستخلص الخميرة. - حضن الأطباق على درجة حرارة المعمل لمدة 0 أيام ثم عد البكتريا شـاهد أنواع البكتريا الموجودة على الأطباق مع فخصها ميكروسـكوبيا. بعد صبغها بصبغة جرام.

بـ الختبـاروجود الخمائر Detection of yeasts
ضـع قطعة هـن الفاكهـة المجففـة يِ أنبوبـة محتويـة على بيئـة مـرق الجلوكـوز ومسـتخلص الخـميرة المحهضـة بحـامض الـلاكتيك إلى رقم pH \& ثم حضن الأنبوبة على درجـة حـرارة المعهـل لمـدةه أيـام ثم اختبر ميكروسـكوبيا للخميرة أو للبكتريا الموجودة

ج- اختبـاروجود الميكروبـات التي تخمر الالاكتوز:

ضـع قطعة من الفاكهة المجففـة يِ أنبوبـة محتويـة على بيئـة هـرق الـلاكتوز ودليـل بروهـوكـريزول بريل والتي بها أنبوبة در هـام حضن على درجةV حامض بالبيئة افحص ميكروسـكوبيا.

Detection of molds د- اختبـاروجود الفطريـات
ضع اسـَّ من تخفيفات أجار المولت رقم pH لهاهr حضن على درجة حرارة الحـجرة لمدة 0 أيام قدر عدد الفطريات وركذلك لاحظ الأنواع الموجودة

التلريب العملي

أمامك عينات من الفواكة المجففة (زبيب- بلحَ مشمش). والمطلوب فخص هذه العينات وإجراء كل مـن الاختبارات التالية:

ا- تقدير العدد الكلي للبكتريا بطريقة العد بالأطباق.
Y- اختبار وجود الخهـائر.
r- اختبار وجود الميكروبات المخمرة لسكر اللاكتوز. غ- اختبار وجود الفطريات.

0- دون نتائج الاختبار ِپِ جدول.

اختبار وجود الفطريات	اختبـار وجـود الميكروبـات المخمرة للاكتوز	اختبار وجود الخهـأر	نوع التغير البيئة	$\stackrel{\rightharpoonup}{1}$
			تكون غاز	1
			الفحص الميكروسكوبي	r
			الصبغ بجرام	r

س ا : مـا هي أنواع الأحياء الدقيقة التي تتوقعها أن تتواجد على الفاكهة المجفقة؟(تين- مشمش).
 - - - - _ - - - - - - - _ - _ -
\qquad
\qquad
\qquad
\qquad
\qquad

سץ : لماذا يكون العفن أكثر سببـا يِّ تلف الفاكهة ؟

سّ؟: نتيجة الفحص الذي قمت به- اذكر أنواع الأحياء الدقيقة التي وجـدتها على الفاكهـة المجففـة؟ مـع رسـم هذه الأحياء الدقيقة ؟

الأحياء الدقيقة في الأغلية

الاختبار البكتريولوجي للدقيق

الجلارة:التعرف والكشف عن الميكروبات التي توجد يِ الدقيق.

 الأهداف:1- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد پِخ الدقيق ووصفها. Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها.
r- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبةه9٪٪. الوقت المتوقِ للتدريب على الجدارة: سـاعتان

الوسـائل المسـاعلة:
1- وجود مختبر لـلأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبارات المختلفة. Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. ب- استخخدام اللوحات التوضيـحية المبينة لأشكـال الكائنات الحية الدقيقة.

متطلبـات الجلارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها. ץ- تحتاج الجدارة التدريب مسبقا على كيفية استخخدام الأجهزة التي تستخدم ِِْ الاختبار.

يحتــوي الــدقيق علــى أنــواع عديـــدة مــن الميـكروبــات كـالفطريــات والخهــائر والبـكتريــا والاكتينوميسـس وتتوقف كميتتها علـى عوامـل عديـدة منهـا درجـة الرطوبـة ونظافـة البـذور المطحونـة مـن الأمراض النبـاتية الفطرية والبـكترية وتلوث الدقيق بالأتربـة.

وعادة توجد البكتريا المتجـرثمة بأعداد وفيرة نسـبياً وذلك وِّ طـور الجـراثيم لــدم مـلاءمـة الـدقيق لنمو الأطوار الخضرية إذا مـا كانت نسبة الرطوبة بـه قليلة.

الأدواتوالمواد الالازمة

> ا- ا- أطباق بتري معقمـة.

ع- بيئة الأجار المفذي.
طريقة العمل
ا- أوزن مقدار • اجم مـن الدقيق الجاف بدقة ثم انقلها إلى زجاجـة تحتوي • فسـمَّ مـاء معقم. ا ץدرجةهغ
ع- حضن الأطباق على درجة• •ץْ مْ مدة يومـين
0- عد الميكروبات النـامية على الأطباق ثم قدر العدد الكلي پِ الجرام الواحد وزن جاف.
7- قســم الميكروبـات النـاميـة إلى بكتريـا وخهـيرة وفطريـات ثـم قســم البـكتريـا إلى مجـاميع بكتريـا متجرثــة - ملونة..الخ.

تقدير علد الجراثيم البكتيرية

يمكن تقدير عدد البـكتريا المتجرثهـة وذلـك بتسـخـين التخفيفـات السـابقة على درجـة•^ م ملمدة10 دقيقة ثم زرعها كهـا سبق وعدهـا بعد فترة التحضـين، قدر عدد البكتريـا المتجرثهـة وْ عينـة الـدقيق الـتي أمـامك ثم انسبها إلى العدد الكلي للبكتريا.

شكل(7) الشكل المجهري البكتريا(-) سـالبة لجرام،(+) موجبة لجرام

الوحدة العـاشرة الاغتبـار البكتزيولوجي لللا	-10. الأحياء الدقيقة في الأغذية	التخصص تقنية التصنيي الفذائي	
التلدربب العملي			
	كما ذكرت فِّ الدرس العهلي		
عدد الجراثيم البكتيرية	العدد الكلي للميكروبات	نوع العينة	$\stackrel{\rightharpoonup}{ }$
		دقيق	1
		القشور	r
		الخارجية(النخالة)	

أسئلة

س ا : مـا هي أنواع الأحياء الدقيقة التي تعيش على الحبوب ؟

سץ :مـا هو تأثير عملية الطحن على عدد الأحياء الدقيقة يٌِ الطحـين؟

سّ :بماذا تكثر الأحيـاء الدقيقة علىى الطحــين الـذي يحتوي على نسـبـة هـن القشـور(النـخالـة) عـن الطــــين الأبيض النقي؟

سع : لماذا ينمو العفن على قطعة الخبز الرطبة؟

س0: صف الأحياء الدقيقة التي حصلت عليها نتيجة الاختبار العملي الذي قمت به؟

الأحيـاء الدقيقة في الأغلية

الاختبـار البـكتريولوجي للمشـروبات المعبـأة

الجلدارة:التعرف والكشف عن الميكروبات التي توجد يٌ المشثروبات المعبأة.
الأهداف:
1- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد يٌٌ المشروبات المعبأة ووصفها. Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها.
r- أن يقوم المتدرب باستخدام الميكروسكوب بالطريقة الصحيحة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 9^٪. الوقت المتوقع للتدريب على الجدارة: ساعتان

الوسائل المساعلة:

ا- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبارات المختلفة. ץ- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضان- جهاز العد الكلي.للبكتريا. r- استتخدام اللوحات التوضيحيـة المبينـة لأشـكال الكائنـات الحية الدقيقة.

متطلبـات|الجلارة:

ا- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.

ץ- تحتاج الجدارة التدريب مسبقا على كيفية استخخدام الأجهزة التي تستخدم وِّ الاختبار.

الاختبـار البكتزيولوجي للمشروبـات الممبـأة

يجب أن تكون المشـروبات المعبأة نظيفة بكتريولوجياً ويطبق عادة على هذه المشـروبات المواصفـات
البكيريولوجية الخاصة بمياه الشرب.
الأدوات اللازمة
ا. مشـروبات معبأة وِ زجاجات ومـكوناتها الفذائية
Y. أطباق بتري هعقمة.「. بـيئة أجار المولت.

ع. بيئة مـاكونكي السـائلة.
0. بيئة الأجار المفذي.
7. زجاجات معدة للتعبئة.

V
^. . سـدادات لهذه الزجاجات
(أ) اختبـار المشروبـات الجـاهزة للاستهلاك
1- الحصول على العينة
افتح زجاجة تحت شـروط تعقيم و عقم فوهـة الزجاجة بتعريضـها للهب، ثـم اســحب عينـة باسـتعمـال مـاصة • اسمَّ معقمـة، (العينات المحتويـة على غـاز ثـاني أكسـيد الكربـون يجـب أن تفتتح قبـل أخـذ العينـة
 كلها سـائل وليس بها غاز)
r- العلـبطريقة الأطبـاق
خـن اســمَ مـن العينـة وقـدر عـدد البـكتريـا باسـتعمـال الأجـار المــنذي وعـدد الفطريـات والخهـائر

r- فحص المينة ليكروبـات القولون
 مكررات، حضن على درجةV ${ }^{\circ}$ م لمدة ${ }^{\circ}$ أيام واختبر وجود الغاز.

ملحوظة

يطبق عادة على هذه المشـروبات المواصفات البكتريولوجية الخاصة بمياه الشرب

(ب) فحص المكونـات الفذائية المصنوع منها المشروبـات

ا- تخضير العينة

r- العد بطريقة الأطبـاق
تسـتعمل بيئـة الأجـار المفـذي لتقـدير العـدد الكلـي وبيئــة أجـار المولـت لتقـدير عــدد الفطريـات والخمـائر، قدر الميكروبات ِِْ جرام واحد هـن الســكر أو الشـراب أو اسـمَّ مـن المـادة المكسـبـة للطعـم أو اللون.

ج- الاختبـارات البكتزيولوجية للزجـاجـات المعلدة للتعبئلة

1- أضف• اسـَّ من بيئة أجار المولت إلى إحدى الزجاجات ثم لف الزجاجة حول نفسـها حتى تلامس البيئة جميع سطحها ثم اتركها على أحد جوانبها وحضنها
 أسطح الزجاجة
r- قدر عدد الميكروبات فيـه بطريقة الأطباق مستعهـلاً بيئة أجار المولت يمكن تقدير عدد ميكروبات القولون باستعهمال بيئة مـاكونكي السـائلة المحتوية على أنابيب درهـام اختبار غطاء الزجاجات بكتريولوجياً
 بحيث السطح الداخلي يكون الخارج، صب أجار المولت، قدر عدد البكتريا والخهـائر والفطريـات بكل غطاء.

التلدريب العملي

أمـامك البيئات التي قمت بتحضيرهـا والمطلوب إجراء الاختبار هـع اتباع الخطوات التي ذكرت لك.

أسئلة

س ا :أكمل العبارات التالية:
ا- العينـات المحتويـة علـى غــاز Co يجـب أن تفـتح قبـل أخـذ العينـة - - - - - - وذلـك مـن أجل. - - - - - - - - - - يجب التأكد من أن الكمية المأخوذة من العينة للتحليل كلها . - - - - - - - - - . - - - - - - - - - - - - - - - -

سץ: اذكر الاختبـارات التي تجرى للتأكـد من نقاوة المياه ؟

- - - - - - - - - - - - - - - - - - -

\qquad

\qquad
\qquad
r- الاختبار التكميلـي

الأحياء الدقيقة في الأغلية

الفحص البكتريولوجي للأغذية المعلبة غير الفاسدة
الجلدارة:التعرف والكشف عن الميكروبات التي توجد يٌِ الأغذية المعلبة.

الأهداف:

ا- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد يِّ الأغذية المعلبة على أن تكون غير فاسـدة

Y- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها.
r- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصحيحة. مستوى الأداء المطلوب:أن يصل المتدرب إلى إتقان الجدارة بنسبة90٪٪. الوقّت المتوقِّع للتلدريب على الجلارة: سـاعتان

الوسـائل المسـاعلدة:
个- ץ- وجود مختبر لـلأحياء الدقيقة مجهز بجميع الأدوات الـلازمـة لإجراء الاختبـارات المختلفة.

متطلبـات الجلارة:

ا- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها. Y- تحتاج الجد ارة التـريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌٌِ الاختبار.

الفحص البكتزيولوجي للأغذيةية المعلبة غير الفاسلدة

تختبر الأغذية المعلبة بكتريولوجيا من حيث تمام جودة التعقيم والقدرة على الحفظ ويجري معرفة جودة التعقيم بأخذ عينة منها مباشرة وفخصها بكتريولوجيا أما قدرتها على الحفظ فيجري هذا الاختبار بتحضـين العلب وهـي مقفلة فترة من الزمن.

الأدوات اللازمهة

$$
\begin{aligned}
& \text { 1- أغذية معلبة(خضر وفاكهة). } \\
& \text { ץ- بيئة أجار الجلوكوز والتربتون المحتوية على دليل بروموكربزول بريل. } \\
& \text { r- بيئة أجار البيتون والحديد. } \\
& \text { ع- بيئة مرق الكبد. } \\
& \text { 0- بيئة أجار المولت. } \\
& \text { 7- أطباق بترية معقمـة. }
\end{aligned}
$$

طريقة العمل
1- اختبار الخضروات المعلبة من حيث تمـام جودة التعقيم
تحضير العينة
أ- تفتح العلبة تحت شـروط التعقيم، وذلك بتعقيم مكان الفتحة باللهب أو بأي وسيلة أخرى وتستخدم
فتاحة بعد تعقيمها يٌِ اللهب وتفتح بها العلبة ِيْ هذا المككان المعقم. ب- انقل0 اجمَ أوه اسـمَ من الغذاء، تستعمل ماصة معقمة ذات نهاية متسععة لنقل السوائل، كمـا يستعمل ثاقب فلين أو ملعقة spatula معقمة لنقل الأغذية الصلبة أو النصف صلبة يستعمل كذلك قضيب زجاجي معقم للمعاونة يٌ إدخال العينة إلى أنبوبة اختبار هعقهـة. إجراء الاختبار: أ) تخلط المادة الغذائية مع مثل حجهها من الماء المعقم جيداً قبل التلقيح وترج جيداً ويوزعها اسمَآوه 1 جرام منها على أنابيب من البيئات استتعمل واحدة أو أكثر من البيئات الآتية

ا- بيئة أجارأومرق الجلوكوز والتربتون المحتوي على دليل بروموكريزول بريل (لاختبار وجود الميكروبات المحدثة للفسـاد الحمضي المستتتر). ץ- بيئة مـرق الكبد (لاختبار وجود الميكروبات المحللة للبروتينات) والمحدثة لحالات الانتفاخ بالعلب r- بيئة أجار البيتون والحديد(لاختبار الميكروبات المسببـة للفسـاد الكبريتي).

ب) حمض مجهوعة من أنابيب على درجةV افخص ميكروسـكوبيا بعمل غشاء وصبغة بطريقة جرام.

Y- اختتبار الفواكء المعلبـة وغيرهـا من الأغذية الحـامضية لكونها معقمة
يجرى هذا الاختبار بغرض معرفة مدى تعقيم أو وجود البكتريا التي قد تسبب فسـاد الغذاء الحامضي. تحضير الاختبار السـابق:

إجراء الاختبـار
أ- وزع 0 اسـمَّ، أوه أحجم من العينة على أططباق بتري معقم ثم صب بيئة أجار ا لمولت، حضن على درجة •ץْم ملمدةV سـاعة، ثم اجرِ العد لمجـاميع الميكروبات المحبـة للتحموضة النامية ودون النتائج التي

تحصل عليها.

$$
\begin{aligned}
& \text { ب- وزعها اسـُّ، أوها جمر وِ } 7 \text { أنابيب من كل من البيئات التالية:- } \\
& \text { ا- مرق الجلوكوز والتتربتون المحتوي على دليل بروموكريزول بريل. } \\
& \text { r- برق الكـبـ. } \\
& \text { ملحوظة: }
\end{aligned}
$$

من الأجار المعقم فوق سطح البيئة السـائلة، ثم حضن ثلاثة أنابيب من كل بيئة على درجةV
 للبروتينـات.

ملحوظة:
إذا كانت المادة تحتوي على جزء سـائل وجزء آخر صلب يؤخذ عينة من السـائل كمـا سـبق ومن

اختبـار قوة الحفظ

لمدة • أيام للميكروبات الثروموفيلية ثم اختبر كالآتي:

أ- الاختبـار الظاهري: لعـلامات الفسـاد على العلب (الانتفاخ) قدر الرقم الأيدروجيني بعد فتحها.
ب- الاختبار الميكروسـكوبي بتحضير غشـاء من العلبة وفحصه ميكروسـكوبيا بعد صبغه بطريقة جرام مثلاً

ץ- الأطعمـة الحامضية الأكثر :حضن العلب على درجة• •「م أو على درجة حرارة المعمل لمدةغ ا يوم إلا إذا كانت العلب قد مكثت مثل هذه المدة بالمعمل بعد تصنيعها ، اختبر ظاهرياً كمـا سبق يٌ (1 (1) الا

ץ- للحصول على معلومات أكثر: فيمـا يختص بالميكروبات الموجودة يمكن تتبع (Y) وخطواتها

التلدريب العملي

أمـامك البيئات التي حضرتها، والمطلوب إجراء الاختبار هـع اتباع الخطوات التي ذكرت لك.

الأغذية الحامضية	الفواكة المعلبة	الخضروات المعلبة	العد الكلي للميكروبات	Γ
			البكتريا	1
			الفطريات	r
			الخمائر	r

أسئلة

س ا : ضـع علامة($\sqrt{\text { (أو(X) أمام العبارات التاليـة:- }}$
1- للكشف عن مدى جودة عملية التعقيم لـلأغذية المعلبة تؤخذ عينـات مخزنـة.
Y- للتعرف على كفاءة عملية الحفظ تؤخذ عينات طازجة. r- تستخخدم بيئة أجارالجلوكوز والتربتون للتعرف على التحلل للبروتينات. ع- الأطعمة الحامضية المعلبة تحضن لمدةعץ سـاعة.

سץ. كيف يمـكن التأكد من قوة حفظ كل من
() الخضروات المعلبة

- - - - - - - - - - - - -

\qquad
\qquad
\qquad
\qquad
\qquad

الأحياء الدقيقة في الأغلية

دراسـة مقاومة الجراثيم للحرارة (الخميرة- البكتريا- الفطر)

$$
\begin{aligned}
& \text { دراسة مقاومة الجراثيم للحرارة (البكتيـا- الفطر) } \\
& \text { الجـرا }
\end{aligned}
$$

-10
 اسم الوحلةة:دراسـة مقاومة الجراثيم للحرارة (الخميرة- البكتريا- الفطر)
 الجلارة:التعرف والكشف عن جراثيم الميكروبات التي تقاوم الحرارة.
 الأهداف:
 ا- أن يقوم المتدرب بالتعرف على جراثيه الميكروبات التي تتواجد يٌْ الأغذية وتقـاوم الحرارة. Y- أن يتعلمى المتدرب كيفية إعداد البيئات وتعقيمها
 r- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيـة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪. الوقتت المتوقتع للتلدريب على الجلدارة:سـاعتان

الوسـائل المسـاعلدة:

ا- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبارات المختلفة. Y- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان- جهاز العد الكلىي. ب- استخخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحية الدقيقة.

متطلبـات الجلارة:

ا- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام

بتتميتها.

ץ- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌِ الاختبـار.

الوحلدة الثالثة عشر
 - 10
 دراسة مقاومة جراثيم الخميرةوالفطريـات والبكتزيـا للحرارة

من المعروف أن جراثيم البكتريا أشـد مقاومة للحرارة من جـراثيم الخهـائر والفطريـات ويرجـع ذلـك لأن تركيبها عبارة عن بروتين متماسـك بها نسبـة بسيطة من الماء

الأدوات والمواد اللالزمة

1- جراثيم من الفطريات.
Y-
B. subtilis . جراثيم بكتريا

ع- بيئة بويون الجلوكوز ومستخلص الخميرة
0- بيئة مرق مغذي.
طريقة العمل
احتيـاطات خاصة يجب اتخاذهـا :-
1- يجب عدم لمس جوانب الأنبوبة بالإبرة أثنـاء التلقيح فإذا لمسـت يجب تعقيمها بتعريضها للهب قبـل ابتداء
تجربة المقاومة للحرارة
r- ب- امزج جيداً الميكروب الملقح بالبيئة
ץ- إذا سـختت الأنابيب يِّ حمـام مـائي يجب أن يكون الماء وِ مستوى أعلى من مستوى سـطح البيئة ع- نفذ التعليمـات بدقة للمدة ودرجة الحرارة المستعملة. 0- بعد فترة التعريض للحرارة برد بسرعة يٌ مـاء مثلـج

ا- مقاومة جراثيم الخميرة للحرارة.

 بعد 7 دقائق وهـكذا بعد^، • •1Y، 10 دقيقة اترك الأنبوبة السـابقة بدون تسخين للمقارنة ج- برد الأنابيب بعد رفعها مبـاشـرة وبسـرعة وحضن كل الأنابيب (السـابعة أيضـاً وهـي المسـتعملة للمقارنـة) على درجة حرارة الحـجرة لمدةץ- 0 يوم.

د- اختبر مقدار النمو بالتعكير، الرواسـب، الغاز المتصـاعد، قـارن النمو هـع الأنبوبة غير المعاملة ثم أوضـح ذلك باستعمـال عـلامة(+).
-
rأ) الحرارة الرطبة:
 Penicillium or Aspergillus
بَالحرارة الجافة سبق ذكره هِّ الخميرة

 ومستخلص الخميرة باستعمال ماصة معقمة إلى نصف الأنبوبـة وباستعمال أبرة تلقيح معقمـة حرك البيئة وما بها من جراثيم بغرض توزيعها Y- حضن على درجة حرارة الغرفة لمدةץ- O يوم ثم اختبر لنمو الفطر.「- 「 مقاومة جراثيم البكتويـا للحرارة

 Y- حضن أنابيب المرق الملقح بهعلق B subtilis السـابق الـذكر على درجـة حـرارة المعمـل لمـدةץ-0 يوم ثم اختبر النمو الغشائي على سطح البيئة للميكروب.

الغاز المتصـاعد	الرواسبب	مقدار التعكير	البيئات	م
			بيئة جراثيم البكتريا	1
			بيئة جراثيم الخهـأر	r
			بيئة جراثيم الفطريات	r
			بيئة نقيـة بدون معاملة	ε

أسئلة

س ا : أكمل العبارات التالية:-

الأحيـاء الدقيقة في الأغذيةِ

عد بكتريا الحليب بطريقة العد المباشر

اسه الوحلدة:عد بكتريا الحليب بطريقة العد المباشر.
الجلدارة:التعرف والكشف عن الميكروبات التي توجد يٌ الحليب.
الأهلداف:

ا- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد يٌِ الحليب.. Y- Y أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

ץ- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصـحيحة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 9^٪٪. الوقتت المتوقتع للتلـريب على الجلدارة:سـاعتان.

الوسـائل المسـاعلدة:

ا- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة. ץ- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان- جهاز العد الكلي للبكتريا. r- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـات الجلارة:
ا- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها. Y- تحتاج الجدارة التدريب مسبقا على كيفية استخخدام الأجهزة التي تستخدم ٌِْ الاختبار.

عد بكتريـا الحليب بطريقة العل الميكروسكوبي المبـاشر

Breeds method
 يقدر مساحة الحقل الميكروسـكوبي ثم يؤخذ حجم معلوم من الحليب ((// • اسـمَّ) وينشـر على مسـاحة معلومة على الشريحة (اسمץ) ثم يترك الحليب ليجف ويـزال منـه الـدهن بـالزيلول ثم يثبـت الفشــاء ويصبغ

 كميكروب واحد وبذلك تعطى هذه الطريقة نتيجة مشابهة للعد على الأطباق

الأدواتوالمواد اللازمة:

> ا- عينة حليب.
> Y-
> r-
> ६- شريحة بريد Breed أو شريحة مرسوم عليها اسـٌّ.
> طريقة العمل

ا- قدر مساحة الحقل الميكروسكوبي باستعمال العدسة الزيتية بالطريقة الآتية: أ) اضبط الميكروســكوب على شـريحة زجاجيـة بها تـدريج ميكـروميتري Micrometric scale(شـريحة ميكروميتريـة) باسـتعمال العدسـة الزيتيـة ثم ضـع نقطة مـن زيـت سـيدر على الشـريحة الميكرومتريـة ثم اضبط الميكروسكوب وحرك الثريحة الميكروميترية إلى أن يظهر طـرف التـدريج Scale يٌٍ أول الحقل

 والعكس صحيح
ب) عد التداريج الموجودة على طول قطر الحقل وهــا الــدد يجـب أن يكـون مـنغ اإلى 17 وهــذا معنـاه أن
 ج) احسب مسـاحة الحقل الميكروسكوروبي يٌٌ صورة مربعة باستعمال المعادلة الآتية : r${ }^{2} \Pi \quad$ المساحة

حيث إن ط=

فإذا كان قطر المجال أو الحقل الميكروسـكوبي يسـاوي•17 ميكرون فتك
 r.. 97
\% 0 . . . 0 تقريباً $9 V 7$ =

 Y- اعمل غشـاء من عينـة الحليب المعطـاة لـك وذلـك باسـتعمـال شـريحـة بـرا يـد المرسـوم عليهـا اســمّ،، وذلـك بأخذ ا/ • . ا سـمَ من الحليب باستعمهال ماصة باستير المعقمة مع مـلاحظة تجفيف طرف الماصـة قبـل وضـعه علـى الثــريحة ثـم نشـره بواســطة أبـرة معقمـة علـى مسـاحة الــا اســمَ ثــم جفـف الثــريحة علـى المصـبـاح الكهربائي الذي أمـامك مـ مـراعاة عدم إحداث تشققات بالغشـاء ملحوظة:

يمككن استتعمـال غمس إبرة قياسية Galibrated loop حجمها يسـاوي / • • اسـمَّ على ألا تعقم هـذه
الإبرة باللهب بل تعقم بغمسـها يِّ مـاء يغلي ثم تجفيفها بفوطة نظيفة معقمة.
 90٪ لمدة دقيقة لتتبيت الفشـاء اترك الشـريحة يِخ الهواء لتجف ثم اصبغها بأزرق الميثيلين لمدة نصف دقيقة ثم اغسلها بالماء وبعد تجفيفها افخصها بالعدسـة الزيتية

الحسـاب	الخطوات
	1- قطر الحقل الميكروسكوبي باستعمال العدسة الزيتية (ميكرون) r- مساحة الحقل الميكروسـكوبي للعدسة الزيتية (ميكرون مريع) . r- ع- عدد الحقول الميكروسك الواحد وذلك بعد عد البكتريا 0- عدد البكتريا ֵِِ اسمَّ .

قد تستعمل صبغة نيومان New-mans stain مباشـرة بغمر الغشـاء فيها لمدة 10 ثانية حيث إن تركيبها يسمـح بإزالة الدهن ويثبت الغشـاء وصبغ البكتريا.امل الشريحة للتخلص من الصبغة وهذا يستغرق حوالي - 「 ثانية ثم تفسـل بالماء ثم تجفف على المصباح الكهريائي وتفحص بـالعدسـة الزيتية . وفيما يلي تركيب الصبغة :

اجرام أزرق الميثيلين
\&o سـمّكَحول الايثايل

- ع سـّ رابی كـلورور الإيثان

7 سـّمَ حامض خليك ثلجي.
يضـاف الكححول إلى رابع كلورور الإيثان ويسـخن على حهـام مـائي على •V
هــذه الدرجـة)ثم يضـاف المـخلـوط إلى الميـثلين الأزرق ويـرج إلى أن تــوب الصـبغة ثـم يـبرد ويضـاف حـامض
الخليك ببطء ثم يرشـح.
ملحوظة:
أهم عيوب هذه الطريقة: هو ظهور الميكروبات الحية والميتة وبذلك تعطى أعداد كبيرة كهـا
يـلاحظ أن سمك الغشـاء قد أهمل يِْ الحسـابات السـابقة.

مـن أهم مزايا هذه الطريقة: السـرعة يِّ إجرائهـا كمـا أنهـا تعطي فـكـرة عـن أنـواع البكتريـا الموجـودة وِ الحليب وعن وجود التهاب الضرع من عدمـه حيث تظهر كرات الدم البيضـاء.

أسئلة

س ا :أكمل العبارات التالية:

1- الشريحة المستخدمة يٌ العد الميكروبي تسهى
Y- مسـاحة الحقل الميكروسـكوبي عبارة عن-

- - - - - - - - المتوسط الحسـابي لعدد الميكروبات
§ - - - - - - - - - -
- - - - - - - - - - - - - - - -

\qquad
\qquad
7- أهـم المزايا-

المحتويــات

المقدهـة

الوحدة الأولى: الاحتياطات الخاصة بالمختبر والتعرف على الأجهزة
الوحدة الثانية: هصـادر التلوث
الوحدة الثالثة:مواصفات المستعمـرات البكتيرية الوحدة الرابعة:الفطريات يِّ الأغذية
الوحدة الخامسـة:الخمـائر يوٌ الأغذية
الوحدة السـادسـة: بكتريولوجيا المياه الوحدة السـابعة :الإنزيمـات البكتيرية الوحدة الثامنة : تابع الإنزيمات البكتيرية
الوحدة التاسعة: الاختتبارات التي تجرى على الفواكة المجففة
الوحدة العاشرة:الاختبارات التي تجرى على الدقيق
الوحدة الحادي عشر :الاختبارات التي تجرى على المشثروبات المعبأة الوحدة الثانيـة عشر :الاختبارات التي تجرى على الأغذية المعلبة غير الفاسـدة الوحدة الثالثة عشـر :دراسـة مقاومة جراثيم (البكتريا- الفطريات- الخمائر) للحرارة الوحدة الرابعة عشـر :عد بكتريا الحليب بطريقة العد الميـكروسـكوبي المباشـر الملاحق

