تخصص تّقنية التصنيي الفذائي
 تحليل الأغذية

(عملي)
10 صنع

مقلمهة

الحمد للّه وحده، والصـلاة والسـلام على من لا نبي بعده، مححمد وعلى آله وصحبـه، وبعد :

تسعى المؤسسـة العامة للتدريب التقني والمهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنية والمهنية المتوفرة ِِّ سـوق العمل، ويأتي هذا الاهتمام نتيجـة للتوجهات السـديدة مـ لدن قادة هذا الوطن التي تصب ٌِِ مجملها نحو إيجاد وطن متصامل يعتمد ذاتياً على موارده وعلى قوة شبابه المسلح بالعلم والإيمان من أجل الاستتمرار قدمـاً ٌِِ دفع عجلة التقدم التتموي، لتصل بعون الله تعالى لمصـاف الدول المتقدمة صناعياً.

وقد خطت الإدارة العامة لتصميم وتطوير المناهـج خطوة إيجابيـة تتفق مع التجـارب الدولية المتقدمـة ِّغ بناء البرامـج التدريبية، وفق أسـاليب علمية حديثة تحاكي متطلبات سوق العمل بكافة تخصصـاته لتلبي متطلباته، وقد تمثلت هذه الخطوة ِوْ مشـروع إعداد المعايير المهنية الوطنية الذي يهثل الركيزة الأسـاسية يٌ بنـاء البرامـج التدريبية، إذ تعتمد المعايير يِ بنائها على تشكـيل لجان تخصصية تمثل سـوق العمـل و المؤسسـة العامـة للتدريب التقني والمهني بحيث تتوافق الرؤية العلمية مع الواقع العهلي الذي تفرضها متطلبات سوق العمل، لتخرج هذه اللـجان وٌِ النهاية بنظرة متكـاملة لبرناهـج تدريبي أكثر التصـاقاً بسوق العمل، وأكثر واقعية يٌِ تحقيق متطلبـاته الأسـاسيـة.

وتتتاول هذه الحقيبة التدريبية " تحليل الأغذية - عملي " لمتدربي قسم" تقنية التصنيع الغذائي " للكليات التقنية موضوعات حيوية تتناول كيفية اكتسـاب المهارات اللازمة لهذا التخصص. والإدارة العامة لتصـيم وتطوير المناهـج وهي تضـع بين يديك هـه الحقيبة التدريبية تأمل من الله عز وجل أن تسهم بشكل مباشـر پِ تأصيل المهارات الضرورية اللازمة، بأسـلوب مبسط يخلو من التعقيد، وبالاستعانة بالتطبيقات والأشكـال التي تدعم عملية اكتسـاب هذه المهارات. والله نسـأل أن يوفق القائمـين على إعدادهـا والمستفيدين منها لما يحبه ويرضاه، إنـه سهيع مجيب

تّهيلـ

الحمد لله رب العالمين، والصـلاة والسـلام على أشرف المرسلـين، نبينـا محمد النبي الأمـين، ومـن اتبع هديه إلى يوم الدين.
هذه الحقيبة يِّ تحليل الأغذية (الجزء العملي)، نقدمـه لمتدربي قسـم شعبة تقنية التصنيع الغذائي، وقد راعينا فيها تتقيح وتحديث وتبسيط المعلومات بهـا يتتاسـب مـع المتدربين وفقا للمنهـج الدراسـي المعتهد. يلعب تحليل الأغذية دورا كبيرا لتحقيق رغبة المستهلك يِّ الحصول على غذاء يتمناه، حيث يعلم المستهلك علم اليقين علاقة الغذاء بالصححة، ولذلك فهو لا يتـاول الغذاء إلا إذا توفرت لديه معلومـات كافية عن تركيبه العام، وبطبيعة الحال فإن تلك المعلومـات لا تتوفر إلا بالتحليل الكيميـائي الدقيق للفذاء. ولكي تستطيع شركات إنتاج الأغذية المنافسَة ٌِِ الأسواق يجب أن تفي منتجاتها بمتطلبات المستهلكين، ولتحقيق ذلك يجب أن يسود مفهوم توكيد الجودة وعندئذ تخضـع كل خطوات إنتاج الغذاء حتى وصوله إلى المستهلك لتتحليل دقيق للتأكـد من سـلامتها. ويتولى الرقابة على الغذاء يٌ الدولة هيئات حكومية تضع نصب أعينها هحاور الرقابة الثلاثة من إعداد التشريعات والمواصفات القياسيـة، ثم سبل تحليل الأغذية ٌِِ المختبرات المتخصصـة، مع إجراء عمليات التفتيش الفعالة على مصـادر إنتاج الغذاء بغية تحقيق الهدف المنشود من توفير غذاء آمن وصحي للمستهلكـين بكافة أنمـاطهم ومستوياتهم المعيشية.
ويتم थِ هذه الحقيبة نتـاول طرق تقدير مـكونات الغذاء من الماء- الأحماض العضوية ورقم الحموضةالرماد (الأمـلاح المعدنية)- الفيتامينـات (فيتامين ج)- الصبغات (الكلوروفيل والكاروتين)- البروتين الكلي- النتروجين اللابروتيني- الكريوهيدرات (السـكريات المختزلة والنشا)- الألياف الخامالدهون الكلية وثوابتها، وهذا يفيد يٌ تفسير التغيرات التي تحدث بالأغذية بعد الحصـاد وأثنـاء خطوات التصنيع المختلفة. ومعظم الطرق المستخدمة يٌٍ تحليل الأغذية لمعرفة التركيب الكيميائي. تعتبر طرقاً رسمية ومعروفة عالميا من لدى هيئة المحللين الكيميائيين الرسمية AOAC والهيئة الأمريكيـة لكيميائيي الحبوب AOCS والهيئة الأميرصيـة لكيميائيي الزيوت AACC والله نسـأل أن يجعل هذا العمل خالصـا لوجهة الكريم، وأن ينتفع بـه المتدربون ويكون خير عون لهه على التقدم فِّ هذا المجال الحيوي الهام، وهو الهادي إلى سواء السبيل.

تحليل الأغذلية - عملي

المحاليل والأدلة المستخدمة يٌ تحليل الأغذية والإلمام بقواعد السلامة يٌٌ معامل تحليل الأغذية

المحاليل والأدلة المستخدمة في تحليلي الأغذية
والإلام بقواعد السلامة في معامل تحليل الأغذية

الوحدة الأولى : المحاليل والأدلة المستخدمة في تحليل الأغذيةوالإلامب بقواعد السلامة في معامل تحليل

 الأغذيةالجدارة: القيام بعملية المعايرة واستخدام الأدلة والإلمام بقواعد السـلامة.

الأهداف:
ا- أن يتعرف المتدرب على قواعد وإجراءات السـامة يٌ المختبر. Y- أن يقوم المتدرب بإجراء المعايرة بين حهض وقاعدة ويلاحظ نقطة التعادل.

مستوى الأاداء المطلوب : أن يصل المتدرب إلى إتقان الجدارة بنسبة ه^٪.

الوقت المتوقع للتدريب على الجدارة: غ ساعات.

متطلبـات الجلدارة: أن يكون المتدرب قادرا على تقدير ومـلاحظة نقطة التعادل وتطبيق قواعد السـلامة أثناء التجربة وِّ المختبر.

المحاليل والأدلة المستخدمة في تحليل الأغلية

قواعد السلامة في مختبر تحليل الأغذيّة وفحص الأجهزة والأدوات المستخلدمة

أولا : قواعد السالامة في المختبر
يراعى عند بدء العمل يِّ المختبر أن يكون المتدرب ملما بقواعد السـلامة وحريصـا ٌِِ عمله حتى لا يعرض نفسـه إلى بعض الأخطار التي تتتج عن الإهمـال يٌِ العمل وأن يحافظ على الأدوات والأجهزة الموجودة ِيْ المختبر وأن يكون دقيقا يِّ تجاربها حتى يحصل على نتائج صـحيحة. ولكي يتم ذلك عليه مراعاة مـا يأتي: ا- على المتدرب أن ينفذ تعليمـات المدرب بكل دقة داخل المختبر. ץ- Y ץ- لا تشـم الأبخرة المتصـاعدة من المواد الكيميائية أو تفاعـلاتها ولا تتذوقها إلا إذا طلب منك ذلك.حيث إن بعض الأبخرة المتصـاعدة سـامة.
ع- التجارب التي ينتج عنها أبخرة أو غازات ضارة تجرى يِّ غرفة الغازات المعدة لـذلك. - - تأكد أنك تستعمل المادة الصحيحة وذلك بقراءة الورقة الملصقة عليها أكثر من مرة وأعد الوعاء جيدا بعد أخذ حاجتك. ولا تقتح عدة زجاجات يوْ وقت واحد بل أعد غطاء كل زجاجة فور أخذ

حاجتك منها.
7- عند تسخين محلول پٌِ أنبوبة اختبار اجعل اللهب هادئا وابدأ بالتسخين من أعلى إلى أسفل مع تحريك الأنبوبة باستـمرار مع جعل فوهتها بعيدا عن وجهك ووجوه زمـلائك.

عند تخفيف حهض الكبريتيك المركز لا يضاف الماء إلى الحهض بل يضـاف الحهض إلى الماء ببطء -V شديد وعلى جدار الإناء مع التقليب المستمر حيث تتطلق كمية كبيرة من الحرارة قد تؤدي إلى كسـر الإناء المستخدم وإلى أضرار أخرى.
^- لاتسخن الأدوات الزجاجية وهي مبللة بالماء من الخارج ولا تضعها على شيء مبلل أو بارد جدا بعد تسـخينها حتى لا تعرضها للكسـر.

9- عند الانتهاء من التجارب نظف الأدوات التي استعهلتها بالماء جيدا ثم بالماء المقطر حتى تكون نظيفة عند استعمالها يٌِ المرات القادمة وضعها ֵِِ مـكانها المخصص لذلك.

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

ويمكنك التأكد من نظافة الأواني والأدوات الزجاجية بوضع قليل من الماء المقطر فيها ، ويرج ثم يسـب منها ، فإذا شـاهدت الماء المتخلف بالإناء كغشناء متصل فالإناء يعتبر نظيفا. وعلى العكس إذا تجهع الماء المتخلف يٌ قطرات منفصلة فإن الإناء غير نظيف.

$$
\begin{aligned}
& \text { • - دون مشـاهداتك وملحوظاتك عن التتجارب أولا بـأول بكل دقة ولا تعتمد على الذاكرة. } \\
& \text { 11- عند اسـتعهـال الميزان الحسـاس يراعى مـا يأتي: }
\end{aligned}
$$

(أ) أن يكون الميزان موضوعا على سطح أفقي وأن يضبط باستخخدام المسـامير المحواة (القـلاووظ) لجعله أفقيا. ويمـكن معرفة ذلك بقاعدة الهواء الموجود بالقاعدة على أن تكون ِِْ منتصف الدائرة.

> (ب) أن يكون الميزان بعيدا عن تيارات الهواء.
(ج) أن تكون الكفة نظيفة جدا وموضوعة يٌِ مكانها الصحيح.
(د) أن يكون تدريج الميزان مضبوطا على الصفر.
(هـ) أن يعاد ضبط الميزان قبل كل عملية وزن.
(و) أن تبرد الأجسـام المراد وزنها إذا كانت سـاخنة قبل الوزن.
(ز) يجب تدوين الأوزان التي تحصل عليها بعد الوزن مباشـرة.
التعامل مع المواد الكيماوية الخطرة
1- المواد الكيميائية السريعة الاشتعال
إن كثيرا من المواد الكيميائية السـائلة والمذيبات العضوية مثل الأثير والأسيتون وثاني كبريتيد الكربون والبنزين وغيرهـا تشتعل بسرعة، لذا يجب وضعها على مناضد وأمـاكن خاصة ٌِِ المختبر، وبعيدا عن أي مصدر حراري. ومن الخطر والخطأ الشائع عند المبتدئين تسـخين هـذه المواد ٌٌِ إناء مفتوح مبـاشـرة على لهب بنزن. فالطريقة الصحيحة والمسموح بها هي تسـخين مثل هذه المواد على حمام بخاري أو مائي وأحيانا تحتاج إلى
 Y- المواد الكيميائية المتلفة

هناك أخطار جسيمة ناجمة عن سوء استعمـال بعض المواد الكيميائية يف المختبر مثل الأحمـاض والقواعد القوية والبروم والصوديوم وكبريتات الميثيل والمواد الفوسفورية. وعندما تحتاج التجـارب المختبرية استعمـال هذه المواد فمن الضروري مراعاة التعليمـات المختبرية الخاصة بذلك. .فلا يجوز إضـافة الماء مثلا إلى حامض الكبريتيك المركز لأنه يكون مصحوبا بانبعاث حرارة مع غليـان وتطاير رذاذ الحامض مسببـا

حروقا لـأجسـام التي يقع عليها مع كسـر الإناء المستخدم. ولذلك يجب إضافة الحامض تدريجيا وبهدوء إلى الماء على جدار الإناء مع الرج المستمـر. ويفضل اتباع هذه الطريقة عند تخفيف كل الأحماض القوية المركزة. وتعالج الحروق النـاجمة عن الحوامض القوية بـأن تعادل بهـحلول بيكربونات الصـوديوم، أمـا الحروق الناجمة عن القواعد القوية مثل هيدروكسيد الصوديوم فتعالج بهـحلول مخفف من حامض الخليك. وتعالج الحروق النـاجمة عن سوء استعمـال الصوديوم بسـك الماء على المكان المتأثر ثم غسلهـ بهحلول 1٪ من حامض الخليك.

وأما الحروق النـاجهة عن استعهـال مـاء البروم فتعامل بالبنزين ولكن الحروق التي تسببها المواد الفوسفورية فيستعمل محلول نيترات الفضة لتقليل تأثيرهـا ، وأمـا كبريتات الميثيل فتأثيراتها تعامل بهحلول الأمونيـا المخفف.

ب- المواد الكيميائية السـامة
يحدث التسـمم نتيجة لسوء استتعمال بعض المواد الكيميائية السـامـة سواء كانت صلبة أم سـائلة أم غازية مثل السيانيد والزئبق وبخار الزئبق وغاز كبريتيد الهيدروجين وغيرها من المواد العضوية.فبخار الزئبق سـام جدا ويجب استعمـاله بحذر داخل غرفة الغازات المعدة بسـاحبات هوائية. ويجب إزالة قطرات

الزئبق بمعدن الفضة لأنه يكون معه سبيكة ذات صفات غير سـامة.
إن تذوق أو استتشاق أي مادة كيميائية تتتبر طريقة غير صـحيحة لأن ذلك قد يؤدي إلى التسـمـم. ولا يجوز الأكل أو التدخين داخل المختبر. ويمـكن أن يحدث التســم نتيجـة لامتصـاص بعض المواد السـامة عن طريق الجلد، لذا يجب غسـل اليدين جيدا بالماء بعد الانتهاء من استعهـال هذه المواد مباشـرة. وفى حالة دخول مادة كيميائية إلى العين أو الفم يجب غسلها عدة مرات بكميـة وافرة من الماء مباشـرة. وعندما يراد سـحب حجوم معينة من محاليل كيميائية أو حارقة لا يجوز إطلاقا استعمـال الفم. بل

> ع- تستعمل نفاخات مطاطـا النار داخل المختـبر خاصة.

هناك أسباب عديدة لحدوث الحرائق أثناء العمل المختبرى. فعند حدوث حريق ناتج من تسـخين هححاليل موضوعة يِّ بعض الأواني الزجاجية، مثل الكـأس أو الدورق المخخروطي. فأول خطوة يجب اتباعها للسيطرة على الحريق هي أن يقفل مصدر الحرارة(غاز أو كهرباء) ثم تغطى فوهة الإناء بقطعة من الزجاج فتخمد النـار حالا نتيجة لنقص الأكستجين. وفى حالة التهام النـار مـلابس الثـخص يلف حالا بالبطانية المخصصة للحريق ويستلقي يِ مـكان مناسب فتخخمد النـار.

المحاليل والأدلة المستخدمة في تحليل الأغذية

أهـا يِّ حالة الحرائق الكبيرة فتستعمل الأواني المعدة للحرائق الحاوية على رمل جاف. وفى حالات معينة قد يسبب استعمـال الرمل تحطيم أجهزة ثمينة هجاورة لمكان الحريق. فيفضل استعمـال رابع كلوريد الكريون حيث يسكب بكميات واضرة على النار. وتجدر الإشارة هنا بأنه لا يجوز أبدا استعمال هذا السـائل يِّ حالة حرائق فلزات الصوديوم أو البوتاسيوم إذ يؤدي إلى حدوث انفجارات قوية وخطيرة. ويمكن أيضا استخدام طفايات الحريق المحتوية على بيكريونات الصوديوم، البودرة أو الطفايات الغروية فيمـا يناسبها من حريق.

ثانيـا : بعض أدوات المختبر

ِथٌ الشَكل (1) بعض أدوات المختبر الهامة وموجز لاستخدام كل منها وهي كمـا يلي: 1- أنبوبة اختبار: تستعمل لتسخين المواد التي يراد الكشف عن محتوياتها وكذلك إجراء التجارب المعملية البسيطة على نطاق ضيق.

ك - مختلفة كثيرة.

ץ- قمع: يستعمل قٌِ الترشيح لفصل المواد الصلبة عن المواد السـائلة، باستعمال ورق الترشيح. وأيضا لنقل
المحاليل من إناء متسـع إلى آخر ضيق.
ع- مخبار مدرج: يستعهل يِ قياس حـجوم السوائل والمحاليل ويوجد منـه أحجام هختلفة كثيرة . 0- بوتقة: تكون عادة مصنوعة من الخزف أو السليـكا،وتستعمل لحرق بعض المواد الصلبة وإجراء بعض العمليـات الكيميائية بها.

7- حفنة: تصنع من الزجاج أو الخزف أو السليكا ومن أهم استعهـالاتها فصل المواد الصلبة عن السـائل
بالتبـخير.
-V زجاجة سـاعة: تصنع من الزجاج وتستعمل ِِْ فصل المواد بعملية البـخر وبعض العمليات الكيميائية
الأخرى.
^- هـاون ومدق: يستعمل يِّ سـحق المواد الكيميـيائية الصلبـة. 9- قنينة تقدير الكثافة النوعية: لتقدير كثافة الحبيبات الدقيقة والمسـاحيق والسوائل المختلفة. - • - شبـكة سلك: توضع فوق حامل مصباح بنزن لتوزيع الحرارة. 11- دورق: يستعمل ٌِ تحضير المحاليـل وحفظها.

المحاليل والأدلة المستخلدمة في تحليل الأغليّية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

Yاץ قارورة ايرلنمـاير: وتسهى أحيانا بالدورق المخروطي وتستعمل وِّ تحضير بعض المحاليل وإجراء بعض العمليات الكيميـيائية المختلفة بها.

ץ ا - دورق معياري: يستعمل يِ المحاليل العيارية والقياسية. ويوجد منـه أحـجام مختلفة كثيرة. £ا ا- قلم للكتابة على الزجاج: حيث يستعمل يِْ الكتابة على الزجاج والصيني والأواني الملساء. 10- سلك بـلاتين: يتركب من سلك بـلاتين مثبت وِّ قضيب زجاجي ويستعهل ِوْ تقليب المسـاحيق والمواد الصلبة عند تسخينها ويستعمل كذلك يٌ الكشف النوعي على بعض العناصر باستخخدام اللهب.

المحاليل والأدلة المستخدمة في تحليل الأغذية
والإلمام بقواعد السلامة في معامل تحليل الأغذية

r

0

9

\wedge

ร

1

شـكل (1) بعض أدوات المختبر الهامة.

المحاليل والأدلة المستخدمة في تحليل الأغذية

17- ماصة مدرجة: يوجد منها أحجام كثيرة وتستعمل يوْ قياس حجم السوائل والمحاليل. - IV يكون فيها حـجم السـائل الذي يملؤها إلى العـلامة المنقوشـة قرب نهايتها مسـاويا لسعتها المبينـة عليها. وقد يوجد فوق الانتفاخ انتفاخ آخر أصغر منه لضمـان عدم وصول السـائل الذي تمـلأ به الماصة بواسطة المص للفم.
-1^ - سـحاحة: يوجد منها أحجام مختلفة وهي عبارة عن أنبوبة زجاجيـة مدرجة من أعلى إلى أسفل أي إن الصفر يكون أعلى وتتتهي من أسفل بصنبور من الزجاج ويوجد نوع آخر ينتهي بأنبوبة من المطاط مركب عليها هحبس وتتتهي بقطارة. وعادة تستعمل السـحاحات ذات الصنبور الزجاجي للمـحاليل الحمضية مثل حامض الهيدروكلوريك والسـحاحات ذات الصنبور المطاط للمحاليل القلوية مثل

هيدروكسيد الصوديوم.
19- مقبض: يستعمل أسـاسـا كمـاسـك لأنابيب الاختبـار. ملق• ملقاط: يستعمل أسـاسـا كمـاسـك للبواتق. اM- مصباح بنزن: وحامل ثلاثي القوائم.

حامل أنابيب الاختبار.
Y M- حامل فخخاري ثلاثي: يوضـع على الحامل الثـلاثي القوائم لتسـخـين البواتق وغيرهـا.
 البواتق السـاخنة وتجفيفها.

Y- قـ ق- قـع فصل: يستعمل لفصل السوائل التي لا تمتزج مع بعضها.

- Y - حامل

ترمومتر: توجد منـه أنواع كثيرة حسب الغرض الذي يستعمل من أجله. - ز^ زجاجة وزن: وتستخدم لتقدير بعض المواد الكيميائية. - YQ جهاز تقطير: ويتركب من:
(ا) دورق تقطير: يوضع فيـه السـائل المراد تقطيره.
(ب) مكثف: يتصل بدورق التقطير وهو عبارة عن أنبوبة رفيعة مفتوحة الطرفين مستقيمة أو حلزونية

الحوض والأخرى يٌٌ الجزء الأسفل وتتصل بالصنبور لدخول مـاء التبريد. (جـ) دورق استقبال: يستقبل نواتج التقطير.

II

18

11

تابع شـكل (1) بعض أدوات المختبر الهامـة.

المحاليل والأدلة المستخلدمة في تحليل الأغليّية والإلمام بقواعد السلامة في معامل تخليل الأغذية

تابع شكل () بعض أدوات المختبر الهامـة.

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعد السلامةة في معامل تحليل الأغذيّية

تحضير المحاليل العيـارية والمولارية والأدلة

Normal solution المحلول العيـرياري
يعرف المحلول العياري بأنه المحلول الذي يحتوي اللتر منه على الوزن المكـافئ معبرا عنـهـ بـالجرام
ويرمز لهذا المحلول بالرمز (N).
الوزن المكافئ
حيث إن الوزن المكافئ =
حيث (هـ) تعبر عن التكـافؤ.

وزن المذاب بالجرام = الحجم (لتر) X التركيز العياري X الوزن المكافئ
Molar solution المحلول المولر
يعرف المحلول المولر بأنه المحلول الذي يحتوي اللتر منه على وزن جزيئي واحد مـن المادة معبرا عنـه
بالجرامات ويرمز له بالرمز (M).
المول Mol: هو عبارة عن الوزن الجزيئي للمـادة بالجرام.

 وأكمل الحجم إلى نصف لتر بالماء فيمـكن القول أن المحلول الناتج يحتوي على 1 امـول كلوريـد صـوديوم

العلاقةة بين التزكيز المولر و العياري
إن العلاقة العددية بين التركيز المولر المرئر والعياري هي نفس العلاقة بين المول والمكافئ من مادة مـا ،
وتتلخص العـالةة بين المول والمكافئ هٌِ المعادلة الآتية :
ا مول = هـ مكافئ
حيث إن: هــ هي عدد ذرات الهيدروجين التي يتم تفاعلها أو استبدا الها.

يلي من المعادلة التالية:

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

وزن المذاب بالجرام = الحجم (لتر) X التركيز (المولر) X الوزن الجزيئي Molal solution التزكيز المولل

جرام من المذيب، بمعنى عدد المولات بالجرام التي تضاف إلى ا كيلوجرام من المذيب. العلاقة بين المولر والمولل:
يمكن توضيح العاقة بين المولر والمولل من المثال التالي:
محلول من كلوريد الصوديوم تركيزه † مولر- احسب تركيزه بالمول علم علما بأن كثـافـة المحلـول
סr, إجم/ سمז.
الحل:
وزن المحلول = 1 ا 1 جرام

وزن المذيب= =

$1 \cdots X_{r}$
س (تركيز المحلول بالمولل) = =
111%
§- المحلول القياسي Standard solution
 المعروف قوة تركيزه بالضبط) ويستخدم وٌٌ معرفة تركـيز محلول آخر مجهول التركيز. الشروط الواجب توافرها يِّ المواد القياسية:

 الحرارة أو الرطوبة أو التجفيف كذلك لا تمتص الرطوبة أو ثاني أكسيد الكربون من الجو. ז- يجب أن تكون سهلة الذوبان تحت الظروف التي تستعهل فيها.

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

ع- يجب أن يكون وزنها المكافئ عاليـا حتى تصبح أخطاء الوزن صفيرة بدرجة يمكن إهمالها. 0- سهولة الحصول عليها وتتقيتها وتجفيفها وحفظها ٌِِ حالة نقية.
7- هــن أشـهر المــواد القياســية المسـتخخدمة: حهـض الاكســاليك- حهـض البنزويــكـ كـربونـات الصوديوم- اكسـالات الصوديوم و فنالات البوتاسيوم الهيدروجينية.

Percent solution المحلول المئوي (حجمي- وزني)
هو محلول يحتوى على عدد معين من الجرامـات للمـادة المذابة يوْ • • ا جرام من المحلول.
Volume percent solution (حـجمي- حجمي (المحلول المئوي الحجهي
يعبر عن التركـيز المحاليل التي فيها المذاب والمذيب سوائل وتحسب على أسـاس حجم من المـذاب ِغِ

> حـجم معين من المذيب على درجة حرارة معينـة.

- اختيـار الدليل المنـاسب

> هناك عوامل تؤثر على اختيـار الدليل المنـاسب وهى:
> Type of neutralization نوع التعادل

أ- إذا كـان الحـامض قوي والقاعـدة قويـة أو الحمـض والقلوي ضـعيفيـه فإن pH يكـون (V) عنـد نقطـة التكافؤ Stochiometric point معنى ذلك تكون ملـح متعادل وعلى ذلك يختار دليل يتغير لونها عند هــذا الــ pH وأفضـل الأدلـة المسـتخدمـة الـتي يـتغير لونهـا بـين pH ع- 9 هـي أحهـر الميثيـل- برومـوكريزول

بريل- بروموثيمول بلو- كريزول رد وثيمول بلو. ب- التفاعل بين حمض قوي وقاعدة ضعيفة أو العكس يتوقف ذلك على ناتج التفاعل:
$\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{Cl}$

- قاعدة ضعيفة وحامض قوي:

Methyl يـلاحـض أن المحلـول لـه تأثير حـامض نتيجـة تحلـل الملـح المتـكـون فيفضـل يْ هــه الحالـة دليـل الـ . $\varepsilon-$ r.9.ه. لـ pH مدى orange - قاعدة قوية مع حامض ضعيف:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
 $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
تأثير المحلول الناتج يـكون قلويـاً نتيجــة لتتحلل الملـح المتـكـون فأفضـل الأدلـة المسـتخدمة هـي دليـل الفينـول فيثالين.

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعل السلامة في معامل تحليل الأغذية

Y- اللون المتكون عند نقطة التعادل: وإمـكانيـة تمييزه بـالعين المجـردة ولــلك يِّ بعض الأحيـان يسـتخدم دليـل مختتلط كهـا هـو الحـال عند تقدير البروتين (أخضـر البروموكريزول + أحمر الميثايل).

تحضير بعض الأدلة الشائعة الاستخلدام:

 مل ماء مقطر (مدى pH له
 بالماء المقطر (مدى pH لـ

 .(V,7 -7

هــ - دليل النشـا Starch indicator: يستخدم نشـا قابـل للـذوبان ويحضـر بإذابـة حـوالي ا- ا, ا جـرام نشـا
 يحضر طازجا قبل الاستتخدام وعادة يستخخدم يٌ المعايرات التي يستخدم فيها اليود. أمثلة لتحضير بعض المحاليل الهامة:
1- تحضير لتر من محلول•1, ••عياري تقريبا من هيدروكسيد الصوديوم. Y - ت r- تحضير لتر من محلول • ا, •عياري بالضبط من كربونات الصوديوم. ع- تحضير لتر من محلول ا, • عياري بالضبط من حمض الأكسـاليك.

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

تقلير عيـارية بعض المحاليل الهامة

ا- تقلير عيـارية محلول ا, • عيـاري من هيدروكسيلد الصوديوم:
من المعروف أن هيدروكسيد الصـوديوم يمـتص رطوبـة مـن الجـو بسـهولة وتحتـوي على شـوائب مـن كريونات الصوديوم نتيـجة تفاعلها مع ثاني أكسـيد الكربـون مـن الجـو وعلى ذلـك فــلا يمـكـن تحضـير مححلـول قياســا بوزنــة معلوهـة مـن هيدرووكسـيد الصـوديوم وإذابتهـا ِِخ حـجـم معــين كهــا وأن مححاليـل هيدروکسيد الصوديوم غالبـا مـا تتـأثر عياريتها إثــاء التخـزين. ولــنلك عنــد تحضـير محلـول • ا, عيـاري يحضـر محلول ذو تركيز أعلى من ذلك قليـلا ثم تقـدير عياريتـه بالضـبط، كـذلك عنـد اسـتعمال محلـول هيدروكسيد الصوديوم معلوم التركيز وهخزن لمدة يجب تقدير قوته قبل استعهـاله لاحتمال تغير العياريـة أثناء التخزين.

خطوات التجربة:

ا- يؤخـن • • مـل مـن محلـول حـامض الأكسـاليك ا, • عيـاري ٌِْ دورق مخروطـي سـعة • • 1 مـل (حمـض الأكسـاليك محضر بالضبط أي يعتبر محلولاً قياسياً). Y- تضاف Y r ب نقط من دليل الفينول فيثالين . ץ- يتم الضبط بواسطة هيدروكسيد الصوديوم، ما لون الدليل عند نهاية المعايرة؟ ع- بعـد نهايـة التجربــة وظهـور اللـون نسـجل قـراءة السـحـاحة وتعتبـر هـي حـجـم هيدرووكسـيد الصـوديوم المجهول العيارية.

0- لحسـاب عيارية هيدروكسيد الصوديوم نطبق يِّ القانون التالي: $\mathrm{N}_{1} X \mathrm{~V}_{1}=\mathrm{N}_{2} X \mathrm{~V}_{2}$
هي عيـارية هيدروكسيد الصوديوم المطلوب حسـابها.

V2 ${ }_{2}$ ملحوظات:

1- يمـكـن اسـتخدام نفس الخطـوات لتقـدير عياريـة أي قلـوي مجهـول التركيـز وذلـك باسـتعهـال المـادة القياسيـة مـع الدليل.

المحاليل والأدلة المستخلمةلة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

 اللون يأخذ يِّ الاختفاء تدريجيا بسب امتصـاص ثاني أكسيد الكربون من الجو.

ץ- يـلاحظ عنـد تـرك محلـول هيدروكسـيد الصـوديوم مخزنـا يِّ الزجاجـات أن العياريـة تتغير باسـتمرار ويعـزز ذلــك بــأن القلويـات تتفاعـل مـع الزجاجـات وينـتج ثــاني أكسـيد السـليكـون وهيدروكسـيـد كالسيوم و هيدروکسيد الصوديوم وبذلك تحـدث زيادة بسيطة يٌ العياريـه، ، كـذلك هنـاك احتمـال لامتصاص كمية من غاز ثاني أكسيد الكريون من الجو وهذه تسبب نقصـاً طفيفاً ٌِ العياريـه. r- خطوات تقلير عيـاريه محلول ا, • من حمض الهيلدوكلوريك يسـتخدم مـواد فياسـية مثل كريونـات الصـوديوم و بيكريونـات الصـوديوم والبـور اكس و يـودات البوتاسيوم.

خطوات التجرية:

 ץ- يتم التتقيط بالحامض المجهول مع مراعاة التقليب عند كـل إضـافة حتى نصـل إلى النقطـة النهائيـة، وضـح لون الدليل النهائي

६- بعــد نهايـة التتحرــة وظهـور اللـون نسـجل قــراءة السـحاحة وتعتـبر هـي حـجـم حهـض الهيـدروكلوريك
المجهول العياريـه.

- - نقوم بحسـاب عياريـه حمض الهيدروكلوريك من القانون: $\mathrm{N}_{1} \mathrm{XV} \mathrm{V}_{1}=\mathrm{N}_{2} \mathrm{XV}_{2}$

المحاليل والأدلة المستخدمة في تحليل الأغذية

والإلام بقواعد السلامة في معامل تحليل الأغدية

ملحوظات:
1- يجب المحافظة على كريونات الصوديوم من التعرض للجو مـدة طويلـة حيـث إنهـا تمـتص الرطوبـة مـن الجو وتتكون كريونات صوديوم مونوهيدرات.
 سـاعة ثم تبرد يِّ مـجفف زجاجي قبل استخدامها يِّ تحضير المحلول القياسي.

المحاليل والأدلة المستخلدمة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

تحليل الأغذية - عملي

اسه التجربة: تقدير عياريه محلول هيدروكسيد الصوديوم باستخدام حمض الأكسـاليك المعلوم العياريه أدواتالتجربة:
\qquad
\qquad
\qquad
النتائجّ:
يجب على المتدرب إجراء المعايرة ثلاث مـرات وأخذ المتوسط

المتوسط	المعايرة الثالثة	المعايرة الثانية	المعايرة الأولى	
1.	1.	1.	1.	حجم حمض الأكسـاليك
				حجم هيدروكسيد

القانون المستخلدم:

الحسابـات:

المحاليل والأدلة المستخلدمة في تحليل الأغذية

والإلمام بقواعد السلامة في معامل تحليل الأغذية

(تـ)

اسم التجربة: تقدير عياريه محلول حمض الهيدروكلوريك باستخدام كربونات الصوديوم المعلومة العياريه أدوات التجربة:

النتائج :
يجب على المتدرب إجراء المعايرة ثلاث مرات وأخذ المتوسط:

المتوسط	المعايرة الثالثة	المعايرة الثانية	المعايرة الأولى	
1.	1.	1.	1.	حـجم كربونات الصوديوم
				حجم حمض الهيدروكلوريك

القانون المستخلدم:

الحسـابـات:

تليلرالاغغية - عليو

تقدير الرطوبة يٌ الأغذية

الوحلة الثانية	10r 10 صنع	التخصص
تقلير الرطوبلة في الأغلية	تحليل الأغلية - عملي	تقنية التصنيع الفذائي

الوحلدة الثانية : تتقدير الرطوبة في الأغذية

الجدارة: القيام بتقدير الرطوبة باستخدام الفرن الكهربائي.

الأهداف:
1- أن يقوم المتدرب بتقدير الرطوبة باستخدام الفرن الكهربائي. ץ- أن يحسب المتدرب النسبة المئوية للرطوبة.

مستوى الأداء المطلوب : أن يصل المتدرب إلى إتقان الجدارة بنسبة ^9٪..

الوقتت المتوقع للتلدربب على الجدارة: سـاعتان.

الوسائل المساعلة: فرن تجفيف كهربائي- ميزان كهربائي حساس- أطباق زجاجية أو من الألومونيوم لتقدير الرطوبة- مجفف زجاجي- ماسـك معدني.

متطلبـات الجدارة: أن يكون المتدرب قادرا على تطبيق قواعد السـلامة عند استخدام فرن التجفيف الكهربائي.

مقدمة

 الكيميائي على أساس الوزن الجاف وفى بعض الأحيـان بغرض معرفـة وكشـف الغش وٌ بعض الأغذيـة

 ذلك سوف يتم تتاولة بالتفصيل هٌِ المقرر النظري لتحليـل الأغذيـة وسـوف نقصـر المناقشــة هنـا على طريقـة تقدير الرطوبة بالفرن الكهربائي تقلـير الرطوبة بـالفرن الكهربـائي

أساس الطريقة:
هو تعريض العينة المتجانسة والموضوعة ٌِِ صورة طبقة رقيقـة داخل علب تقـدير الرطوبة المصـنوعة

 تفريغ بغرض خفض درجة الحرارة اللازمة لتطاير الرطوبة كمـا هـو الحـال يٌ الأغذيـة المحتويـة على نسبـة عالية من السكر أو البروتين.

الأدواتاتمطلوبة:
§

خطوات تقلدير الرطوبة:

ا- توزن أطباق الرطوبة الجافة والنظيفة والمثبت وزنها من قبل.
r-r تصفير الميزان.
r-

- - يؤخذ الطبق مع العينة من الفرن ويوضع داخل المجفف الزجاجي حتى يبرد. 7- نقوم بحسـاب وزن الطبق مع العينـة بعد التتجفيف.
-V النقص يٌِ الوزن يعتبر هو النسبة المئوية للرطوبة يٌِ العينة.
^- يتم حسـاب النسبـة المئوية للرطوبة باستخدام القانون التالي:
وزن العينة قبل التجفيف - وزن العينة بعد التجفيف
1.. X النسبـة المئوية للرطوبة =
وزن العينة بعد التجفيف = وزن العينة بعد التجفيف - وزن العينة قبل التجفيف الطبق فارغاً

شكل (Y) فرن كهربي لتقدير الرطوبة يٌ الأغذية.

الوحدة الثانية
 $10 r$ صنع
 تقدير الرطوبة في الأغذية
 تحليل الأغذية - عملي

 تـلـريب وأسئلة

 تـلـريب وأسئلة}

التخصص
تقنية التصنيع الغذائي

اسم التجربة:تقدير الرطوبة ٌِْ الأغذية. أدوات التجربــة:--

)		وزن الطبق فارغاً
()	وزن العينة المستخدمة
.)	وزن الطبق مح العينة بع

القانون المستخلم :

الحسابـات:

أسئلة:
س ا : علل: يجب عدم زيادة درجة حرارة تجفيف الطحين عن 0•1 م م

سץ : اذكر فائدة استخدام المجفف الزجاجي

س٪: اذكر الغرض من تقدير الرطوبة هٌِ الأغذية

تحليل الأغلية - عملي

تقدير الأحماض الصضوية ورقم الـحموضة (pH) في الأغلية
تقدير الأحماض العضوية ورقم الـحموضة (pH) وِّ الأغذية

الوحلدة الثالثة : تتقدير الأحماض المضوية ورقّم الـحموضة (pH) في الأغلية

الجدارة: القيام بتقدير الأحماض العضوية ورقم الحموضة يٌْ الأغذية.

الأهداف:
ا- أن يتعرف المتدرب على كيفية تقدير الأحماض العضوية ورقم الحموضة هٌِ الأغذية. Y- أن يقوم المتدرب بإجراء الحسابات الخاصة بالتقدير وأن يتعلم الحكم عليها .

مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة ^^٪..

الوقت المتوقع للتـلريب على الجدارة: سـاعتان.

الوسائل المساعلة: سحاحة- دورق مخروطي سعة . . 1 مل- محلول هيدروكسيد صوديوم 1, •عياريدليل الفينول فيثالين- جهاز الـ pH meter.

متطلبـات الجدارة: أن يكون المتدرب قادرا على تقدير ومـلاحظة نقطة التعادل وتطبيق قواعد السـلامة أثناء التجربة وٌ المختبر.

تقلدير الأحماض العضويلة ورقّم الـحموضة (pH) في الأغذية

Determination of organic acids and the pH value in foods
أولا : تقلدير الأحمـاض العضوية
الأساس العلمي:
يعتمد هذا التقدير على معايرة الحموضة الكلية يْ عينة المادة الفذائية بمحلول قلوي معلوم العيارية (هيدروکسيد الصوديوم NaOH) وتحسب الحموضة الكلية على أسـاس النسبة المئوية للحامض العضوي السـائد پِّ العينة.
المحاليل والأجهزة المطلوبة:
ץ- ا- دحلول هيدرووكسيد الفينول صودلين.

ץ-
६- ستحاحة مدرجة • 0 مل وماصة - 1 مل.

خطوات التجربة:

Y- أضف حوالي 0 م مل من الماء المقطر الذي سبق غليه وتبريده إلى العينة.
r- رج محتويات الدورق جيدا الضهـان تجانس المخلوط.
६- أضف نقطتين من دليل الفينول فيثالين إلى الدورق المخروطي ورج جيدا.
0- عاير المخلوط بواسطة إضافة الصودا الكاوية (هيدروكسيد الصوديوم) من السحاحة مع الرج حتى نقطة انتهاء المعايرة (ظهور لون أحمر وردي خفيف إلى عديم اللون). 7- بعد ظهور اللون نقفل السحاحة ونسجل قراءتها وتعتبر هي حجم هيدروكسيد الصوديوم الذي لزم لمعايرة الحموضة بالعينة.

V- V احسب النسبة المئوية للحموضة الكلية من المعادلة التالية: V X N x E.W
$=\frac{\text { W X } 1000}{}$ X 100

$$
\begin{aligned}
& \text { ح } \\
& \text { عياريه الصودا الكاوية N }
\end{aligned}
$$

الوزن المكافئ للحامض السـائد بالعينـة（الجدول التالي يوضح فيه الوزن المكافئ والوزن الجزيئي لبعض الأحمـاض العضوية السـائدة يٌ بعض الأغذية）． ．وزن العينة بالجرام W

جدول（ ）الوزن الجزيئي والمكافئ لبعض الأحمـاض العضوية السـائدة وِّ بعض الأغذية．

الوزن المكافئ	الوزن الجزيئي	الحاهض
$7 \cdot \cdot 0$	$7 \cdot .0$	الخليك
ヘN，1．	MN，1．	البيوتريك
$7 \varepsilon \cdot \varepsilon$	19r．14	الستريك
$9 \cdot \cdots \wedge$	$9 \cdot, \cdot \wedge$	اللالاكتيك
$7 \mathrm{~V} \cdot 0$	1rE． 9	الماليك
YAY，$¢ 7$	YMY，$¢ 7$	الأوليك
EO．Y	$9 \cdot, \cdot \varepsilon$	الأكسـاليك
09．0	111.9	السكسنيك
Yへぇ， 2 V	ケイย，$\downarrow \downarrow$	الإستياريك
Vo，ε	$10 \cdot .11$	الطرطريك

ثـانيـا ：تّقليـر رقّم حموضة（pH）الهينة
المحاليل والأجهزة اللازمة＂：
1－ 1 كأس زجاجي سـعة • YO مل．
Y－قضيب زجاجي للتقليب．
r－جهاز الـ pH meter（شكل r）．
ع－مـاء مقطر．
طريقة التقلير

r- قم بضبط جهاز الـ pH باستخدام محلول منظم معروف رقم الـ pH (ويفضل استخدام أكثر من محلول منظم لزيادة الدقة) ويفضل أن يكون الـ
r- اغسل قطب الجهاز بالماء المقطر وجففه برفق (زجاج قطب الجهاز رقيق جدا) . ६- ضح قطب الجهاز يٌٌ محلول أو مستخلص العينة برفق ثم اتركه حوالي دقيقة بالمحلول. 0- سـجل رقم حموضة العينة من الجهاز.
7- ارفع قطب الجهاز من العينة واغسله جيدا بالماء المقطر وجففه ثم اغمر القطب يِّ الماء المقطر كمـا كان قبل الاستعمال.

V - دون النتائج پِّ صورة جدول موضحا ٪ للحموضة ورقم الـ pH لكل عينة. ملحوظة:

الحموضة الناتجة من المعايرة مع الصودا الكاوية تسمى بالحموضة الكلية أو Total titratable .acidity

تـدريب وأسئلة

اسم التجربة: تقدير الحموضة الكلية وٌِ عينة عصير البرتقال.

أدوات التجربة:-

النتائج:

$$
\begin{aligned}
& \text { 1- } \\
& \text { ا- - حتجم هيدروكسيد الصوديوم المستخدمة وِّ المعايرة = } \\
& \text { ع- عيارية هيدروكسيد الصوديوم تسـاوي=- } \\
& \text { r- } \\
& \text { القانون المستخلدم: }
\end{aligned}
$$

الحسابـات:
\qquad
\qquad
\qquad
س ب : لماذا تمت القسـمة على . . . عند حسـاب النسبـة المئوية للحموضة ؟

تـدريب وأسئلة

اسهم التجربة: تقدير رقم الحموضة(pH).

أدوات التجربة: :

أسئلة:
س ا : اشـرح باختصـار جهاز الــ pH

الوحدة الرابعة : تقلير الرماد و الأملاح المعلنية

الجدارة: القيام بعملية تقدير الرماد پٌٌ عينة مـادة غذائية وحسـاب النسبة المئوية للأمـلاح.

الأهداف: أن يتمكن المتدرب من تقدير الرماد يٌْ الأغذية وحساب النسبة المئوية لها.

مستوى الأاءاء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 9V٪.

الوقت المتوقع للتلدريب على الجدارة: سـاعتان

الوسائل المساعلدة: فرن احتراق- - بواتق من الصيني- ميزان حسـاس- لهب بنزن- مجفف زجاجي-
ماسـك معدني.

متطلبـات الجدارة:
ا- أن يكون المتدرب قادرا على حسـاب النسبة المئوية للرمـاد پٌ عينة مادة غذائيـة. Y- أن يراعي المتدرب قواعد السـلامة عند استخددام فرن الاحتراق.

تُطلق كلمة الرماد الكلي على الجزء المعدني المتبقي بعد حرق المادة العضـوية بالفـذاء- ويشـتمل
الرمـاد الكلى على كلٍ من:

ا- الرماد الذأئب في الماء Water soluble ash ويحتوي على عنصر الصوديوم والبوتاسيوم أو معادن الأراضي القلوية وإليـه يتعزى قلوية الماء Alkalinity of ash

Acid soluble ash الرماد الذائب في الحامض وقد يُسـى أحياناً بالرماد غير الذائب وِّ الماء Water insoluble ash ويرجع إلى وجود الرمال و السليكا يِّ الأغذية وأهميتـه أنها يُوضـح تلوث المادة الغذائية بالسليكا.

أسـاس التقلير :
 ثاني أكسيد الكربون والماء ويتبقى الجزء المعدني وتُسهى هذه العملية بالترميد Ashing وتتم پٌ أفران خاصة تُسمى فرن الاحتراق Muffle furnace.

الأدوات والأجهزة اللازمهة :

- - فرن احتراق (شكل ع).

Y- بوتقة احتراق من البـلاتين أو الصيني أو السليـكا.
r- ميزان.
ع-

- - مجفف زجاجي.

طريقة التقلير :
ا- تُغسل بوتقة الاحتراق جيداً ثم تُجفف يٌِ الفرن حتى ثبات وزنها ويُسـجل وزن البوتقة وهي فـارغة. Y- Y خُذ
ץ- ضع البوتقة وبها العينة على لهب بنزين واستتمر پِ الحرق حتى يتوقف تصـاعد الدخان من العينة وتتكسر العينة بصورة كاملة تُسمى هذه العملية بـ Ignition.
 اللون أو رمـادية (لون الرماد يتوقف على حسب تركيبهه المعدني) حوالي r- r سـاعة.

- ب- بعد أن يبرد الفرن تمامـاً انقل البوتقة إلى مجفف زجاجي هع الحذر الشـديد من تطاير الرماد لأنه هش

- V أحسب النسبة المئوية للرماد من المعادلة:
وزن البوتقة بالعينـة قبل الترميـد - وزن البوتقة بالرماد

وزن العينـة

شكل (६) فرن الاحتراق Muffle furnace المستخدم فِّ تقدير الرمـاد.
تقلير الرماد غير اللأئب في الماء Determination of water insoluble ash
أسـاس التقلير:
أسـاس هـذا التقـدير هـو فصـل الرهـاد غـير الـذائب يٌ المـاء علـى ورقـة ترشـيح خاليـة مـن الرهـاد
 كمـا يلي: ٪ الرماد الذائب يِّ الماء= الرمـاد الكلى - الرماد غير الذائب ِفِ الماء

المحاليل والأجهزة|المطلوبة:

 ا-Y- دورق ترشيح خال من الرمـاد.

الوحلدة الرابعة

r- مـاء مقطر سـاخن.
 ع- لهب بنزين.
 0- بوتقة السليكا المحتوية على الرماد الكلى.

طريقة التقلير :
ا- خذ البوتقة المحتوية على الرمـاد الكلى بحـذر وأضف إليهـا •ץ مـل مـن المـاء المقطر السـاخن (بحيـث تكون الإضافة بجانب البوتقة منعاً لفقد الرماد أو تطايره).
 ץ- رشـح محتويات البوتقة باستتخدام ورق ترشيح رقم זگ ثم اغسـل البوتقة والورقة بواسطة •0 مل من الماء

السـاخن واحفظ بالمرشـح لتقدير قلوية الرمـاد (Alkalinity of ash). ع- خذ ورقـة الترشـيح وهـا عليهـا مـن رهـاد وانقلـها إلى البوتقـة وأجـر عمليـة الحـرق وِْ فـرن الاحـتراق لمـدة سـاعة على درجة •00 مْ.

- ا احسب وزن الرمـاد غير الذائب يٌ الماء بعد أن تبرد البوتقة وإعادة وزنها وما بها من رماد.
 ملحوظة: الرمـاد غير الذائب پِ丷 الماء يشمل كـلاً من الرماد الذائب وغير الذائب وٌِ الحامض معاً.

تقتليـر الفوسفور
يُوجد العديد من الطرق التي تُستخدم ِ2ْ تقدير الفوسفور ولكن سـوف نقتصر ٌِْ دراستتا على طريقة وآخرين عام 190 وهي تعتمد أسـاسـاً على تكـون لون أزرق بين الفوسفور ومولبيدات الأمونيوم وهـا اللون يُقاس على طول موجي •77 ملليميكرون ويُحسب التركيز من منحنى قياس للفوسفور.

المحاليل :
ا- حامض كبريتيك • ا مولر: •V مل من حهض الكبريتيك ويُضـاف إليها • 1 ا مل مـاء مقطر. Y- بح الكبريتيك • ا مولر ثم تُقل المحتويات بعد تمـام الذوبان إلى دورق معيـاري سعة • 0 مل ويُكمل الحـجم إلى العـلامة بالماء المقطر.
 مححلول مولبيدات الأمونيوم ويُنقل إلى دورق معياري سعة •0 مل ثم يُكمـل الحـجم إلى العـلامـة بالماء المقطر (هذا المحلول يُحضر مباشـرة قبل الاستخخدام ويسـىى بـ FSAM).

ع - هحلـول الفوسـفور القياسـي: يُسـتخدم فوسـفـات أحـادى البوتاسـيوم KH2
 0- يُؤخذ ا مل من المحلول الفوسفور القياسي وهو يحتوى على •MY ميكروجرام فوسـفور ويُخفف بالمـاء المقطر ٌِْ دورق معياري سعة • ا مل ويُعتبر هذا الأخير هو المحلول القياسـي. تحضير المنحنى القيـاسي :

 ميـكروجرام.

Y- Y يُكمّل الحـجم إلى Y مل بالماء المقطر (البـلانك عبارة عن r مل من الماء المقطر).
r- يُضـاض r مل من المحلول الطازجFerrous sulfate ammonium molebdate ثم الرج جيداً ع- تُترك الأنابيب لمدة سـاعتـين على درجة حرارة الغرفة. - تُقرأ الكثافة الضوئية Optical density (OD) على طول موجي •77 ملليميكرون وتُرسـم العـلاقة بين التركيز والكثافة الضوئية (يُمكن توضيح الخطوات السـابقة ِضِ الجدول التالي). جدول (Y) المنحنى القياسي المستخخدم وٌ حسـاب نسبـة الفوسفور.

Tube No.	ml. of standard solution	ml. of water added	ml. of FSAM. added	Concentration $\mu \mathrm{g}$	O.D. at 660 nm .
1	0.1	1.9	2	3.2	
2	0.2	1.8	2	6.4	
3	0.3	1.7	2	9.6	
4	0.4	1.6	2	12.8	
5	0.5	1.5	2	16.0	
6	0.6	1.4	2	19.2	
7	0.7	1.3	2	22.4	
8	0.8	1.2	2	25.6	
9	0.0	2.00	2	Blank 0.0	

تقدلير الفوسفور الكلى في عينة مادة غذائية:
ا- يُوزن نصف جرام عينة وتُوضع ٌِِ دورق هضم البروتين. r- ثُبلل العينة بقليل من الماء المقطر.
r- يُضاف إلى الدورق 0 مل من حهض النتريك المركز و 0 مل من حامض البيروكلوريك.

ع- تُجرى عملية الهضم على لهب هـادئ حتى تُصبح العينة عديمة اللون (حوالي سـاعتين). - تُ تُرد العينة وتُتقل نقلاً كـمياً إلى دورق معياري سعة •0 مل.
 sulfate-Ammonium molebdate (FSAM) -V تُرج الأنبوبة وتُترك لمدة سـاعتين على حرارة الغرفة ثم تُقاس الكثافة الضوئية (OD) على طول مـوجي -77 ملليميكرون. ^- من المنحنى القياسـي احسب نسبة الفوسفور الكلى ٌِْ العينة.

الوحدة الرابعة تقدير الرماد و الأملاح المعدنية	اor تحليل الأغدية - عهلي	التخصص تقنية التصنيع الغذائي
	تّلريبب وأسئلةّ	
	اسهم التجربة : تقدير الرماد الكلى ¢ِ الأغذية.	
		النتائج
	$=$	وزن البوتقة فارغة
	= وزن البوتقة وبها العينة قبل الترميد	
	وزن البوتقة وبها الرماد	
		القانون المستخلم:

سّ؟: اذكر فائدة استخخدام المجفف الزجاجي

تقدير الفيتامينـات

الوحلة الخامسة : تقّدير الفيتامينـات

الجدارة: القدرة على قياس وحسـاب نسبة فيتامين ج (C) وِّ الأغذية

الأهداف:
ا- أن يتعرف المتدرب على فوائد فيتامين C
C Y- Y- أن يعدد المتدرب بعض أنواع الأغذية المحتوية على فيتامين r- أن يتمكن المتدرب من حساب النسبة المئوية لفيتامين C يٌِ عينة عصير ليمون

مستوى الأاداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 9V٪

الوقت المتوقع للتدريب على الجدارة: سـاعتان
 ثنائي كلوروفينول أندوفينول- حمض اكساليك Y٪- عينة عصير ليمون

متطلبـاتا الجلارة:

ا- أن يكون المتدرب قادرا على حسـاب النسبة المئوية لفيتامين C Y- أن يكون المتدرب قادرا على معرفة أهمية الفيتامين بالنسبة للإنسـان.

تقلير الفيتامينـات

تقدير فيتامين ج في الأغلية بـالمايرةبصبفة r- 7 ثنـائي كلورو فينول اندوفينول

أسـاس التقلير :
يحتوى فيتامين C أو L-Ascorbic acid على التركيـب الاينولى بـين ذرتي الكربون رقـم r، r

L-Ascorbic acid
Blue color)
(Reduced form)
2,6DCPI
(Oxidized form)
V X T

Dehydro Ascorbic acid
(Purple color)(
(Oxidized form)

NH

OH

2,6 DCPI
(Reduced form)
100 X V X T القانون المستخدم:

W

$$
\begin{aligned}
& \text { حيث إن V } \\
& \text { T } \\
& \text { W }
\end{aligned}
$$

1- حامض اكسـاليك Y٪ أو قد يستخدم حامض الميتالوفوسفوريك $٪ ٪$ أو حامض الخليك • ٪٪. Y- تحضير محلول صبغة Dichlorophenolendophenol ويتم تحضير الصبغة كالآتي:
 المحتويات.

ب) أضف • م م ملليجـرام مـن صـبغة Dichlorophenolendophenol وقلب المحلـول بشـدة لإتمـام ذوبـان الصبغة.

ج) أكهـل الحـجـم إلى لـتر بالمـاء المقطـر ثمر رشــح واسـتقبل الراشــح ِوْ زجاجـة ذات لـون داكـن وهحكهـة القفل.

د) احتفظ بهحلول الصبغة يٌِ الثلاجة. هـ) تقدر قوة محلول الصبغة يوميا قبل الاستعمـال. r- محلول حامض الأسكوربيك القياستي: أ) يذاب . .0 ملليجـرام من حامض الأسـكوربيك پو . .0 ملليلتر من حامض الأكسـاليـك Y٪.
 يحتوى الملليلتر الواحد على 0,••٪ ملليجرام حامض أسـكوربيك. تعريف قوة الصبغة

تعـرف قوة الصـبغة على أنهـا عـدد ملليجرامـات حـامض الأســكوربيك الـتي تكـافئ ا ملليلتر هـن محلول صبغة 2.6 Dichlorophenolendophenoi ويتم تقديرها كالآتي:

طريقة التقلدير
أ) يؤخذ 0 ملليلتر من حامض الأسـكوربيك العياري ٌِِ دورق مخروطي. ب) يضـاف 0 مل من حامض الأكسـاليك ب٪. ج) عادل بواسطة الصبغة الموجودة وٌِ السـحاحة. د) تعرف على نقطة انتهاء التفاعل بظهور لون وردي لمدة 10 ثانية.

ا- استخلاص المينة:

يتم الاستخخلاص للعينـة بحـامض (أكسـاليك- ميتافوسـفوريك) حيـث يكـون pH بـين r- ع عـو هذا النطاق يكون لون الصبغة ثابتاً وكذلك يحدث تثبيط لإنزيم Ascorbic acid oxidase وعند ارتفـاع

الــ pH عن المدى السـابق يزداد فعل العوامل الأخرى المختزلة وعنــد انخفـاض الــ pH نجـد أن لـون الصـبغة يتلاشى.
ويتم الاستخـلاص كالآتي :

أ) العينـات الطازجــة: تسـتخلص بواســطة حــامض الميتافوســفوريك أو الأكســاليك باســتخدام خــلاط كهريائي.
ب) العينات المجففة : تحتوى على ثاني أكسيد الكبريت (SO2) نتيـجة عملية الكبرتـة ووجوده يعمـل على
 ويصبح يِّ صورة غير حرة ولا يدخل وِ التفاعل.
ج) العينـات المعلبـة : تتواجـــ فيهـا أيونـات الحديــد والنـحـاس وتسـبـب اختـزال الصـبغة ويـتم التغلـب عليهـا باستخدام حامض خليك (ی,•٪).
وعادة تتم عملية الاستخلاص بِن الخطوات الآتية : ا- يؤخـن . . الخـلاط لمدة دقيقتين .
Y Y ب r- يؤخذ • 1 مل من المحلول الأخير ونـاير بالصبغة.
 1• $\mathbf{X}_{Y} \cdot \mathbf{X}_{\text {Y... }}$
=

$$
1 \cdots \mathbf{X} \varepsilon \cdots
$$

ثم تحسب كمية Vitamin C بالملليجرام لكل . • ا جرام عين كالآتي :

Vitamin C mg/ 100 gm sample $=\quad \mathbf{X} 100$ W

احسب كميـة فيتامـين C يِّ عينـة مقدارهـا ا جم ثم استخخلاصها ومعادلتها بواسطة مدلول الصـبغة وكانت النتائج كالآتي:

من تعريف قوة الصبغة وهو عـدد ملليجرامـات فيتامـين C النقي الـتي تكـافئ ا هـل صـبغة يمـكن حسـاب قوة الصبغة كالآتي:
r X

$$
r v g \varepsilon
$$

عدد ملليجرامـات الفيتامين بالعينة= قوة الصبغة X حجم الصبغة المستخخدم للعينة.

$$
1 \cdots \quad \mathbf{X} \cdot g 0 \wedge r \wedge r
$$

1
ملليجـرام فيتامـين / OKوイY=
هذا ويمكن تطبيق القانون ِض خطوة واحدة كالآتي:

$$
1 \cdot \mathbf{X}_{\cdot g \cdot o r \varepsilon v \mathbf{X}}^{1 \cdot g} 9
$$

$$
\begin{aligned}
& \text { ع وV } \\
& \text { ا مل صبغة = ملليجرام فيتامـين C نقي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1- حـجم الصبغة لمعادلة • مل مستخلص العيـة = هو • } 1 \text { مل. }
\end{aligned}
$$

تقدير النسبة المئوية لفيتامين C في الأغذية

أدوات التجربة

عينـة عصير

طريقة التجربة

ا- نأخذ 0 مل من عينة العصير ونضعها يٌ دورق .
r- نضيف عليها 0 مل من حامض الاكسـاليك Y٪.
ץ- المعايرة من السـحاحة المحتوية على الصبغة حتى ظهور لون وردي. ؟- بعد ظهور اللون نقفل السـحاحة ونسـجل القراءة ثم نحسب نسبة فيتامـين C باستتخدام القانون . مـلاحظة : لحسـاب قوة الصبغة يجب مـلاحظة الآتي:
 فيتامـين C كمهادة صلبـة.

كل 0 مل من محلول حمض الأسـكوربيك القيـاسي يحتوى على Y Y جم من فيتامـين C. وعنـدما قمنا بإجراء المعايرة لإيجاد قوة الصبغة قمنا بأخذ 0 مل من هحلول حمض الأسـكوربيك فلاحظنا الآتي:
أن 0 مل من حامض الأسـكوربيك تعادل (- - -) مل من هحلول الصبغة. نقوم بالتعويض عن 0 مل بــ Y O.O ملليجـرام من فيتامـين C C وتكتب بالثشكل التالي: Y,0 ملليجرام من فيتامـين (C) تعادل (- - -) مل من محلول الصبغة

$$
\begin{aligned}
& \text { (T) ملليجرام من فيتامـين (C) تعادل ا مل من محلول الصبغة } \\
& \text { بضرب الطرفين ِپْ الوسطين } \\
& \text { (- -) } \mathbf{X} \mathrm{T}=1 \mathrm{X} \text { ヶ, } \\
& 1 \mathbf{X} \text { r,o } \\
& =\mathrm{T} \\
& \text { (- - -) }
\end{aligned}
$$

ثم تحسب النسبة المئوية بعد إيجاد

الوحدة الخامسل		التخصص
تقدير الفيتامينات	تحليل الأغذية - عملي	تقنية/لتصنيع الغذائي
	تّلدريب وأسئلة	

\qquad

تحليل الأغذية - عملي

تقدير الصبغات

الوحلدة السادسلة : تقلدير الصبفات

الجلدارة: المقدرة على تقدير صبغتي الكلوروفيل والكاروتين يٌْ الأغذية.

الأهلداف: أن يتمكن المتدرب من تقدير صبغتي الكلوروفيل والكاروتين پٌ الأغذية.

> مستوى الأداء المطلوب! أن يصل المتدرب إلى إتقان الجدارة بنسبة £9 ٪.

الوقت المتوقع للتلدريب على الجدارة: سـاعتان

الوسائل المساعلة: أسيتون- اثبر بترولي- كبريتات الصوديوم اللامائية- كلوروفورم- أكسيد المونيوم أو ماغنسيوم- محلول الاستخلاص (ץ ٪ أسيتون/ اثبر بترولي)- عمود زجاج.

متطلبـات الجدارة: أن يكون المتدرب قادرا على تقدير صبغتي الكلوروفيل والكاروتين يٌٌ الأغذية.

تقلير الصبفات

أولا : تقدير الكلوروفيل

يمـكن بهذه الطريقة قياس محتوى المواد الفذائية من الكلوروفيل أ ، ب.
الكيمـاويـات المطلوبة:

هيدروكينون.
r- رمل ناعم نقي (يجب غسيل الرمل عدة مرات بحمض الأيدروكلوريك قبل الاستتعمال).
طريقة الاستخلاص والتقدير :
ا- يتم أخذ 0, • جم من العينة النباتية المراد قياس الكلوروفيل بها.
Y- توضـع العينـة يِّ هـون صـيني ويوضـع عليهـا القليـل جــدا مـن الرهـل النـاعمروكهيــة صـغيرة جـدا هـن

 ع- يتم الترشيـح وأخذ جزء من الرائق وتقاس الكثافة الضوئية (OD) على الأطوال الموجيـة الـتي تظهـر ِو المعادلات التالية باستخدام جهاز الأسبكترووفوتوميتر.

طريقة الحسـاب:
ا- كلوروفيل أ
يحسب من المعادلة التالية:
Chlorophyll A, mg/ litter $=(9.93$ X OD at 660 nm$)-(0.777 \mathrm{X} \mathrm{OD}$ at 642.5 nm$)$
r- كلوروفيل ب

يحسب من المعادلة التالية:
Chlorophyll B, mg/ litter $=(17.6$ X OD at 642.5 nm$)-(2.81 \mathrm{X} \mathrm{OD}$ at 660 nm$)$
ז- كلوروفيل أ + ب

يحسب من المعادلة التالية:
Total chlorophyll, $\mathrm{mg} /$ litter $=(7.12 \mathrm{X} \mathrm{OD}$ at 660 nm$)+(16.8 \mathrm{X} \mathrm{OD}$ at 642.5 nm$)$

ثانيـا : تقلير صبفة الكاروتين في الأغليةيّ

Determination of carotene pigments in foods
يتم استخـلاص هذه الصبغات وٌ أحد المذيبات العضوية ثم إمرارهـا على عمود محتوى على الألومينـا أو أكسيد الماغنسيوم ويتم بعد ذلك قراءة الكثافة الضوئية للعينـة ويُمـكـن حسـاب التركيـز مـن منـحنى قياس تُستخدم فيـه صبغة الـ β - β النقية وفى بعض الأحيان يتم تقدير الكثافة الضوئية لمسـتخخلص الصبغة مباشرةً ويُمـكن الحسـاب من المنحنى القياسي.

المحاليل والأدوات اللازمهة:

$$
\begin{aligned}
& \text { 1- أسيتون. } \\
& \text { ץ- إثير بترولي. } \\
& \text { r- صوديوم كبريتات الـلامـائية. } \\
& \text { ع- كلوروفورم. } \\
& \text { - ا- أكسيد ألومنيوم أو مـاغنسيوم. } \\
& \text { 7- دحلول الاستخخلاص (ّ٪ أسيتون / الإثير البترولي. } \\
& \text { V- ع- عمود زجاجي }
\end{aligned}
$$

ا- زن بدقة إلى YO مل بواسطة الإثير البترولي (1 مل = مليـجرام صبغة).
 مل=• (ميكروجرام صبغة).

 0- بواسطة جهاز Spectorphotometer سـجل الكثثافة الضـوئية المقابلـة لكـل تركيـز وذلـك على طـول موجي مقداره عor ملليمكرون. 7- ارسـم العـلاقة بـين الكثافة الضوئية على المحور الرأسـي والتركيـز على المحـور الأفقي بهقيـاس رسـم

ب- استخلاص الصبفة من العينة:

ا- خذ وزنة مناسبـة من العينـة (0-1 • جم) بحيث تحتوى على •1 إلى . 0 ميـكروجرام صـبغة واطحـن العينة وِّ هون صيني ِيْ وجود الأسيتون واستخخدم رمـالً للمسـاعدة على الاستخخلاص إذا لزم الأمر. ץ- استمر یِغ عملية الاستخخلاص مرتين أو ثلاثاً حتى يُصبح الأسيتون عديم اللون.

ץ- رشـح المستخلص الكلى خلال طبقة من القطن أو الصوف الزجاجي وخذ الراشـح إلى قهـع فصل. ع- أضف إلى مستخلص الصبغة يٌٍ الأسيتون حوالي •1 إلى 10 مل إثير بترولي ثم انقل الصبغة إلى طبقة الإثير البترولي عن طريق إضافة جزء من الماء المقطر أو المحتوي على \%٪ كبريتات صوديوم. 0- رج محتويات الدورق ثم افصل الطبقة المحتوية على صبغة الكاروتين. تُصبح طبقة الإثير البترولي عديمة اللون. V-V رشتح مستخلص البترول الإثيري خلال طبقة من كبريتات الصوديوم الـلامائية وأكمل الحـجم معياري باستتخدام الإثير البترولي (Y إلى •0 مل). ^- يـتم تقـدير الكاروتينـات الكليـة بتقـدير الكثافـة الضـوئية للمسـتخلص علـى موجـة مقـدارهـا ملليمكــرون وذلـك بأخـذ حـجـم معـين يِّ دورق معيـاري سـعة . . ا مـل يحتـوى على النسبـة من المنحنى القياسي السـابق إعداده أمـا ِِْ حالة تقدير صبغة البيتا كـاروتين يتم عمـل مـا يلي.

ج- الفصل الكروماتوجرافي :
1- يتم تعبئة عمود الفصل الزجاجي بواسطة هسـحوق أكسـيد الماغنسـيوم (MgO) بطـول حـوالي • ســم يوضع قطعة من القطن يِّ أسفل العمود أيضـاً يتم تعبئة طبقة من كبريتات الصوديوم الـلامـائية بعمق ا سـم تقريباً فوق طبقة أكسيد الماغنسيوم.
Y- بتم تبليل مادة الادمصاص بواسطة إضافة الإثير البترولي إلى العمود. r- يتم تحميل من (0 إلى • 1 مل) من مستخخلص العينة على العمود ويتم الاستخلاص حيث تخرج صبغة الـ قبل جميع الصبغات الأخرى. β-carotene ع- يـتم تجميـع الصـبغة الخارجـة مـن العمـود ويُكَـل الحـجـم ٌِِ دورق معيـاري ذي سـعة منـاسـبـة بواسـطة الإثير البترولي.
 ويُستخدم البـلانك ب٪ أسيتون وِ الإثير البترولي.
7- يتم حسـاب \% لصبغة البيتا كاروتين من المنحنى القياسـي السـابق إعداده وذلك تبعاً للمعادلة التاليـة:

ميكروجرام بيتا كاروتين / • • ا جم عينة
تركيز الصبغة يِّ المستخلص (ميكروجرام X الحـجم النهائي X معامل التخفيف × . . .)
وزن العينـة

الوحلدة السادسة تقدير الصبفات	10r تحليل الأغدية - عملي	التخصص تقنية التصنيع الغذائي
	تٌّلرِّبِ	
		اسهم الثجربـلة : تق
		الثّانوز المّتخلما

الثقانوز المستخلـم :

الحسـابـات:

الثقانوز المستخْلـم :

الحسـابـات:

تحليل الأغذْيةة - عملي

الكربوهيدرات وِ الأغذية

الوحلة السابعة: : الكربوهيلدرات في الأغليةي

الجدارة: القيام بتقدير السكريات المختزلة والنشا والألياف الخام (طريقة ويندي).

الأهلاف: أن يتمكن المتدرب من تقدير وحسـاب النسبة المئوية للسكريات المختزلـة والنشـا والأليـاف الخـام (طريقة ويندي).

مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 9V ٪.

الوقت المتوقِ للتدريب على الجلارة: ع ساعات

 هيدروكسيد البوتاسيوم - جهـاز فيوري لاستتخلاص الأليـاف الخـامَ بواتق زجاجيـة ذات مسـام • \& ,• ملليمتر.

متطلبـات الجدارة: أن يكون المتدرب قادرا على حسـاب وتقدير النسبة المئويـة للســكريات المختزلـة والنشـا والألياف الخام.

Carbohydrates الكربوهيلدرات

أولا : تقلدير السكريـات المختزلة كمياً

لكي يتم تقدير المركبات السكرية بالأغذية كمياً يجب استخلاصها أولاً ثم التخلص مـن المواد

 الأمينيـة والـتي تكـون نشـطة ضـوئياً المركبـات الفينوليـة والـدهون وبعض المـواد الغرويـة والـبروتين ويتـم التخلص من الصبغات بواسطة استخخدام الفحـم أو راتتجـات التبـادل الأيوني ويُستتخدم بعض مـواد التترويق
 الرصاص الزائد بالمحلول باستخدام أكسـالات البوتاسيوم.

تحضير مستخلص السكر للتقدير الكمي :

> يمر ذلك بالخطوات الآتية :

Extraction of sugar أ- استخلاص السكر
 المقطر و 「 جرام كريونات كال r- اغل اغلمدة نصف سـاعة مع التقليب المستمر لاستخخلاص السكر r- انقل محتويات الكأس نقلاً كمياً إلى دورق معياري سعة لتر. ب - الترويق Clarification
ا- أضف كميات متتالية من خلات الرصاص • ٪٪ إلى محتويات الدورق واستمر بِّ الإضافة مــ التقليب حتى يتكون راسب حبيبي ينفصل بسرعة إلى القاع ثم أكمل محتويات الدورق إلى العلامة بالماء المقطر. Y- بش رشح المحلول خلال دورق ترشيح (قد تُستخدم مواد مساعدة لسرعة الترشيح). جـ - إزالة الرصاص Deleading
1- أضف إلى الراشح كمية بسيطة من أكسـالات البوتاسـيوم أو كـربونـات الصـوديوم الجافـة حتى يتم ترسيب خلات الرصاص من المحلول. r- رشـح المحلول لإزالـة الرصـاص المترسـب ثم اختبر الراشـح لوجود أيونـات الرصـاص عن طريق إضـافـة بلورات بسيطة من أكسـالات الرصاص إلى جزء من الراشـح يٌ أنبوبة اختبار ولاحظ تـكـون راس راسـب أبيض دليـلاً على وجود أيونات الرصاص بمستخلص السكر.
 كربونات الرصاص) دليل على ترسيب جميع أيونات الرصاص من المستخلص. \&- يتم الترشثيح ويكون هذا المستخلص الخالي من الرصاص جاهزاً لتقدير السكر با بانه.

Lane-Eynon تقلير السكريـات المختزلة بواسطة طريقة

المختزلة ويتم حساب حجم محلول السكر الذي يلزم لاختزال حجم معين من محلـول فهلنج أ ، ب (• مـل أو F مل من المحلولين) ومن جداول خاصة يُمكن حسـاب نسبة السكر المختزل بالعينة .

المحاليل والأدواتاتلمطلوبة:
ا- محلول السكر العياري (1 مل يحتوى على Y,0 مليجرام جلوكوز).
Y- بليل أزرق الميثيلين ا٪ يو الماء.
r-
६- محلـول فهلنت أ: يـذاب ويكمل الحجم إلى .0 مل.
 بوتاسيوم طرطرات) هِّ الماء المقطر ويكمل الحجم إلى . .0 مل.

7- ماصة سعة 0 أو • 1 مل.
V- سـحاحة سعة -0 مل. ^- لهب بنزن.

طريقة التقلير :
 متسـاويان من المحلولين ويأخذ منهما الحجم المطلوب (• ا أو Y Y مـل) ويتم الخلط قبل الاستعمـال مباشـرة ويستبعد المتبقي بعد ذلكت
Y- r- من السحاحة المحتوية على مستخلص العينة السكري أضف حوالي 10 مل دفعة واحدة. r- ســن محتويات الدورق على اللهب حتى الغليان لمدة دقيقتين ولاحظ محتويات الدورق إذا استمر اللون الأزرق دليـلا على عدم اختزال جميع أيونات النحاس.

ع- تتـم إضـافة محلول العينـة من السـحاحة على دفـات صغيرة مـع اسـتـمرار الغليـان وذلـك حتى يُصـبـح لـون محلول فهلنج أزرق خفيف.

- - أضف ب- o نقط من دليل أزرق الميثلين إلى الدورق ثم أكهـل المعـايرة نقطـة بنقطـة حتى اختفـاء لـون دليل أزرق الميثلين تُعتبر هذه المعايرة تجريبية أو أولية.
 عدا ا مل يُضـاف نقطة بنقطة حتى انتهاء الاختزال. V- أجر التجربة مـرة أخرى مع محلول السـكر العياري الذي يحتوى ا مل منـه على Y, O مليجرام جلوكوز. ^- مـن جـداول Lane-Eynon أوجـد قيهـة الســكر المختـزل المقابـل للحـجـم المـأخوذ وٍِ عمليـة المعـايرة ثـم احسب كمية السـكر المختزل بعد إدخال عامل التتخفيف وٌِ الاعتبار.

ملحوظات على التقدير: 1- يجب أن يتم الغليان خلال دقيقتين من بداية التسخخين.
 0 ا ثانيـة بـين كل إضافة وأخرى بحيث تتتهي عملية المعايرة تمـامـاً خـلال r- ع دقائق من بداية التسـخين. r- عند إضافة الدفعة الأولى من مستتخلص العينـة إلى محلول فهلنج والغليـان إذا اختفى اللون الأزرق تمامـاً (• (مل مححلول فهلنج أ، ب) وظهر اللون الأحمر دل ذلـك على زيـادة تركيـز الســكر بالمسـتخلص فيـجـب

الحسـاب النهائي.

- م من الجـدول يُمـكن الحسـاب على أسـاس سـكروز أو جلوكوز أو مالتوز. مثال ا: عند استتخدام •1 جم من عينة المربى تم استخخلاص السـكر وقدرت السـريات المختزلة بطريقة ولز Lane-Eynon للسـكريات المختزلة يٌِ العينة إذا كـان الحـجم النهائي هو •Y0 مل.

من الجدول نجد أن IV مل مستخخلص العينة يُقابله = 900 مليجرام سـكر مختزل Y90 مليـجرام سـكر مختزل توجد و2 . . 1 مـل.
 YO. \times Y90
الوحلدة السـابعة

$$
\begin{aligned}
& \text { VrV, } 0=\square=X \\
& \text { 1.. } \\
& 1 \cdots \times V Y V, 0 \\
& \% \text { \%,VVO = } \\
& \text { 1••× 1• }
\end{aligned}
$$

مثــال Y: عنــد تقـدير الســكريات المختزلــة بطريقـة Lane-Eynon أجـري اسـتخخلاص الســكر مـن عينـة مقدارهـا • 1 جم ونقلت كمياً إلى دورق معياري سعةة •Y Yـل وتم الترويـق واسـتخدم • 1 مـل مححلول فهلنـج وك المختزلة بالعينـة كنسبـة مئوية.

من الجداول الخاصة بـ • 1 مل هحلون فهلنج نجد أن:

ا مل مححلول مستخلص العينة يُقابله ^, •• مليجرام . • ا مل
r,
M, Y معنى ذلك أن مستخلص العينة يحتوى . . ا مل منـه على MO,V7 مليجرام سـكر مختزل YO. YMO,V7 \times YO.
\qquad

$$
1 \cdots
$$

وهى نفس الكمية الموجودة ٌِِ العينة الأصلية لأنها نقلت كمياً إلى دورق معياري سـعة - YO مل

$$
1 \cdots \times 0 \wedge 9 \varepsilon
$$

$$
\text { \% } 0, \wedge 9 \varepsilon=\square=
$$

$$
1 \cdot
$$

جدول (Lane Eynon (ץتـدير السـكريات المختزلة (مليجرام سـكر مختزل لكل . • ا مل محلول).

	10 ml Fehling	25 ml Fehling
15	327	801.0
16	307	751.0
17	289	707.0
18	274	668.0
19	260	633.0
20	247.4	661.5
21	235.8	572.9
22	225.5	547.3
23	216.1	523.6
24	207.4	501.9
25	199.3	482.0
26	191.8	463.7
27	184.9	446.8
28	178.5	431.1
29	172.5	416.4
30	167.0	402.7
31	161.8	389.7
32	156.9	377.6
33	152.4	366.3
34	148.0	355.6
35	143.9	345.6
36	140.0	336.3
37	136.4	327.4
38	132.9	318.8
39	129.6	310.7
40	126.5	303.1
41	123.6	295.9
42	120.8	289.0
43	118.1	282.4
44	115.5	276.1
45	113.0	270.1
46	110.6	264.3
47	108.4	258.8
48	106.2	253.5
49	104.1	246.4
50	102.2	243.6

ثانيـا : تقتلير النشا في الأغليةية Determination of Starch in Foods

أسـاس التقلير :
يعتمد هـا التقدير على التخلص من السـكريات البسيطة والأحادية من العينة بواسطة الماء ثم يُجـرى التحليل بالحامض للسكريات العديدة (النشا) وبعد ذلك يتم تقدير السـكريات المختزلة ويُضرب

المحاليل المطلوبة:

$$
\text { r- حمض يد كل كثافته } 0 \text { • • ا جم/ سـمץ }
$$

ع- صودا كاويـة •0٪.

- 1- دورق مخروطي ومكثف عاكس.

7- لهب أو مصدر تسـخين.
جميع مححاليل وأدوات تقدير السـكريات المختزلة.

خطوات العمل :
ا- يُؤخذ مقطر بارد وتُقلب المحتويات لمدة سـاعة.

r- يتم نقل المادة المتبقية على ورقة الترشيح إلى دورق آخر سـعة . •O مل وذلك بواسطة . . ب مل مـاء مقطر.
 ֵِْ ذلك لمدة Y, بساعة.
0- تُبرد دحتويات الدورق إلى درجة حرارة الغرفة ثم تُعادل بواسطة ص أ يد •0٪ ثم تُنقل إلى دورق معياري سعة - YO مل ويُكَمل إلى العـلامة بالماء المقطر. 7- يتم الترشيح ويُؤخذ الراشـح لتقدير السكريات المختزلة بواسطة الطريقة السـابقة. - V \% للنشـا = \% للـجلوكوز بعد التحليل × 9 •

> ا- عينة المادة الغذائية (دقيق فول).
> Y - Y ماء مقطر.

ثالثا : تقلير الألياف الخامبطريقة ويندي Weende

الأسـاس العلمي :
تعتمـد هذه الطريقة على إذابة وانحـلال المركبـات الـلاسـيلولوزية Non- cellulose بواسـطة هحلـول حمض الكبريتيك المخفف ومحلول هيدروركسيد البوتاسيوم المخفف.

المحاليل:

1- مححلول حامض الكبريتيك (1, Y ٪ أو •Y00, • عياري) = Y,0 جرام من الحمض المركز تخفف إلى -•• • مل بالماء المقطر.
 المقطر وتخفف إلى . . 1 مل.

الأجهزة:
ץ-

شكل (0) جهاز فيوري Fiwe لاستخلاص الألياف الخام.
تحضير المينة :
يجب مراعاة الشروط الآتية يٌ هذه الطريقة عند تحضير العينة: ا- يجب أن تكون العينة مجففة وناعمة حين تمر من منخل فتحتـه 1 مليمتر (N مش).
 بالحـرارة المرتفعة يغير من طبيعتها فبالإمـكان تجفيدهـا Freeze drying قبل الطحن

ץ- إذا كانت نسبة الدهون پِ العينة تبلغ أكثر من •0 \% فيجب نزع الدهـن قبل طحنها. ع- إذا كانت العينة بالغة النعومـة ويخشى أن تسد ذراتها فتحات البوتقة فيمـكن إضـافة مـادة السـيـلايت Celite

ا- زن ا جرام من العينة بدقة يِّكل من الست بواتق الزجاجية ويرمز لهذا الوزن بـ F0.
 ץ- أنزل اليد الرافعة وثبتها پِ الوضع السفلي، ويجب أن تكون البواتق مثبتة بإحكام.

ع - افتح الماء واضبط معدل السـريان بحوالي
0- شغل الجهاز وتأكد من إضاءة لمبة التشغيل.
7- أضف • 10 مل من الحامض الذي سبق تستخينه حتى الوقت المطلوب لبدء الغليان.
V ا أضف r- 0 نقط من الأوكتانول كمضـاد للرغوة.
^- د دع محلول الحامض يغلي لمدة •r دقيقة بالضبط.
9- شغل طلمبة التفريغ لصرف محلول الحمض إلى المجاري.

- ا- اغسـل ثلات مرات بحوالي •
 الأوكتانول.

عا- اغسل بالماء المقطر البـارد ثم بالأسيتون ثلاث مرات (Y مل يِّ كـل مرة) وقلب العينـة بواسـطة الهواء المضغوط.
 الزجاجي حتى تبرد ثم زن (F1).

احسب النسبة المئوية لـلألياف الخام من المعادلة الآتية: -IV

$$
\mathrm{F} 1-\mathrm{F} 2
$$

$1 \cdots X$

تـدريببوأسئلة

Lane \&Eynon اسم التجربة: :تقدير السـكريات المختزلة بواسطة طريقة
النتتائج:
وزن العينة بالجـرام =
حجم المحلول السـكري العياري الـلازم لاختزال • ا مل من محلول فهلنج = حجم مستخلص العينة اللازم لاختزال • 1 مل من متحلول فهلنج

القانون المستخلدم:

الحسـابـات:

أسئلة:
Lane \&Eynon س ا : ما هو الأسـاس العلمي لتقدير السكريات المختزلة بطريقة

سץ : مـا هو الدليل على نهاية التجربة؟

اسه التجربةة: تقدير النشـا
القـانون المسـتخلم:

الحسـابـات:

اسم التجربلة: تقدير الألياف الخام بطريقة ويندي.

تحليل الأغذية - عملي
البروتينات يٌِ الأغذية

الجلدارة：القيام بعملية تقدير البروتين الكلي والنتروجين اللابروتيني يٌِ عينة مادة غذائية باستخدام طريقة ميكروكلداهل．

الأهداف ：أن يتمكن المتدرب من تقدير البروتين الكلى يٌٌ الأغذية بواسطة طريقة ميكرووكلداهل وحسـاب النسبة المئوية للبروتين．

مستوى الأداء المطلوب ：أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪．． الوقتت المتوقِ للتدريب على الجلارة：ع سـاعات

الوسائل المساعلة：مستحوق هضم－دوارق هضم كلداهل ذات عنق طويل－ماصات سعة 0، • مل مل دوارق مخروطية سعة ．．． 10 مل مل سحاحة سعة •0 مل－وحدة تقطير ميكروكلداهل－وحدة هضمر．

> متطلبـات الجدارة: أن يكون المتدرب قادرا على تقدير وحسـاب النسبة المئوية للبروتين وٌِ عينـة مـادة غذائية وأن يراعي قواعد السـلامـة عند استخخدام جهاز ميكروكلداهل.

 العينة مـع حامض كبريتيك مركز (مرحلة الهضم). ץ- تحطـيم أو تكسـير کبريتـات الأمونيـوم السـابق تكوينهـا بواسـطة الصـودا الكاويـة المركـز (•ع٪)
 (مرحلة التقطير). $\mathrm{H}_{3} \mathrm{BO}_{3}$
 يُيـكن حسـاب كمية النيتروجين ِوْ العينة (مرحلة المعايرة).

المحاليل والأدوات اللازمهة:
1- حمض كبريتيك مركز.
Y- مححلول هيدروكسيد صوديوم •६٪ r- حمض بوريك Y٪.
ع- حهض الأيدروكلوريك r, () N / 70 مل حمض يد كـل مركز نقي وتكمل إلى r لتر بالماء المقطر). ه- دليل مختلط Mixed indicator (• م مليجرام أحمر الميثيل+ ... 1 مليجرام أخضربروموكريزول تُطحن جيداً يْ هون زجاجي مع كحول الإيثايل ويُكمل الحـجم إلى . . 1 مل بالكـحول). Y- أقراص هضـ جاهزة أو مسـحوق هضم Digestion mixture (يتكـرن من •ץ جزء من كبريتات
 وتُخلط جيداً وٌِ هون). V- V دوارق هضم كلداهل ذات عنق طويل

人- مـاصـات سعة 0، • مل.
9- 9 دوارق مخروطية سـعة . . ا أو • 10 مل.

- -

11- وحدة هضم (شكـل 7 أ).
I I - وحدة تقطير ميكروكلداهل (شكل 7 ب).

شـكل (7) وحدة هضم البـروتـين (أ). ووحدة تقطير ميـكروكلد اهـل (ب).
طريقةة الاتقتلــر :
 Y- أضف إليها قرص هضم أو حوالي 0, • جم من مسـحوق الهضم. r- إذا كانت العينة جافة بللها بقليل من الماء المقطر. ع- أضف إلى الأنبوبة بحذر حوالي • - 10 مل حمض كبريتيك مركز وذلك تبعا لنسبة البروتين وِ العينة.

0- ضع أنبوبة الهضم على وحدة الهضم ثم شعل مصيدة الغازات وابدأ التسـخين البطيء (درجة منخفضـة من مفتاح وحدة التسـخين) حتى يتوقف الفوران وتتحول محتويات الدورق من اللون الأسـود إلى البني.
7- ارفع درجة حرارة التسـخين (زيادة مفتاح وحدة التسخـين) واستتمر وِّ الغليان حتى تصير المكونات عديمة اللون (عادةً من r- ع سـاعات حسب نسبـة البروتين والأليـاف بالعينة). V- V ارفع الأنابيب من وحدة الهضمر واتركها حتى تبرد تمامـاً (نهاية مرحلة الهضم). 1- أكمل أنبوبة الهضم المحتوية على العينة المهضومة كمياً بالماء المقطر إلى . . ا مل وضعها وِ مـكانها المخصص على وحدة التقطير. 9- تأكد من وصـلات جهاز التقطير أنها سليمة.
-1- يضبط برنامج جهاز التقطير من حيث مدة التقطير (•ا دقائق) كذلك تضبط كمية القلوي المضافة أوتوماتيكيا لـلأنبوبة (• - Yo مل) أيضا تضبط كمية حامض البوريك (0- • مل) المحتوي على الدليل المختلط والتي تضـخ فِّ الجهة الأخرى لجهاز التقطير ِفِ الدورق المخروطي 11- ابدأ وِ丷 التقطير لمدة • ا دقائق.

Y Y ا أوقف دفع البخار واغسل نهاية المكثف بالماء المقطر وارفع الدورق المخروطي (نهاية مرحلة التقطير). ¹ - عاير محتويات الدورق المخروطي بواسطة حمض يد كل N/70 من السـحاحة حتى نقطة التعادل (تحول لون محتويات الدورق المخروطي من الأخضر إلى الأحمر). عا- لابد من عمل تجربة صفرية (Blank) وذلك بإجراء كـل الخطور الـوات السـابقة على عينة خالية من البروتين.

10- احسب ٪ للبروتين ِِْ العينـة من المعادلة التالية :

$$
(\text { TV Sample }- \text { TV Blank) } \times \mathrm{N} \times 14 \times 6.25 \times 100
$$

\% Protein $=$

$$
\mathrm{W} \times 1000
$$

حيث إن:
= TV sample (N/70) عياريه حمض يد كـ $=$ N
= W
6.25 = معامل تحويل النيتروجين إلى بروتين (يختلف من بروتين لآخر)

TV Blank
ملحوظـات:
1- الأبخرة والفازات الناتجة يِّ مرحلة الهضم ضـارة بالجهاز التتفسي ولذلك يجب إجراء الهضم داخل خزانة الغازات أو استتخدام المصيدة الموجودة بالعمل.

ي- يجب اتباع الإرشـادات والتعليمـات التي تلقى عليك بالمعمل بكل دقة. r- استتخدم المعامل التالي لتحويل النيتروجـين إلى بروتين حسب نوع العينة:

 N $\times 0, V$

ثانيا : تـتدير النيتروجين الالابروتيني بـالأغذية أسـاس التقلير :
يعتمد هذا التقدير على ترسيب بروتين المادة الغذائية بواسطة حامض الخليك ثلاثي الكلور TCA

> ثم تقدير النيتروجين يٌ الراشـح كمـا سبق.

المحاليل والأدوات المستخلمةة :

1- محلول حهض الخليك ثلاثي الكلور •؟٪
جهاز رج ميكانيكي.
r-
طريقة العمل:
 -r مـ من من حمض الخليك ثلاثي الكلور ورج جيداً.
Y أكمل إلى العـلامـة بالماء المقطر ورج من وقتٍ لآخر على مـدى سـاعة على درجة حرارة الغرفة.
ץ- رشـح محتويات الدورق ثم خذ • ا مل من الراشـح وضعها پٌِ أنبوبة الهضم.

ع- أجر عملية الهضم والتقطير كمـا سبق عند تقدير البروتين.
0- أجر تجربة بـلانك ودوّن حجم يد كل المستخدم واطرحاه من الحجـم المستخخدم ٌِِ معايرة العينة. 7- احسب النيتروجين يٌٍ العينة مـن المعادلة التالية:
(TV Sample - TV Blank) $\times \mathrm{N} \times 14 \times 100 \times 100$
\qquad

$$
\mathrm{W} \times 1000 \times 10
$$

حيث إن:
TV Sample 100 10 وزن العينة بالجرام (• \quad (جم) W
TV Blank

تـلـريب

السم التجربة: : تقدير البروتين الكلى يٌِ الأغذية باستخدام طريقة ميكروكلداهل. القانون المستخلدم:

النتائج:
حجم حمض الأيدروكلوريك المأخوذة للمعايرة =
= عياريه حمض الأيدروكلوريك
$=\quad$ وزن العينة بالجـرام

تٌ

اسم التجربة: : تقدير النتروجين الـلابروتيني بالأغذية.

القانون المستخلدم:

الحسـابـات:
حجم حمض الأيدروكلوريك المستخخدم ٌِِ المعايرة =
عياريه حمض الأيدروكلوريك المستخخدم الحجـم المخففة إليه العينة
حـجم العينة المأخوذ للهضم
وزن العينة بالجرام

الزيوت والدهون

الوحلة التاسهة: الزيوت والدهون

الجدارة: القيام بتقدير النسبة الكلية للزيت يٌْ الأغذية وتقدير ثوابت الزيت.

الأهلاف: أن يتمكن المتدرب مـن تقدير النسبة المئوية للزيت پٌٌ بعض الأغدية وأيضا تقدير الثوابت الخاصة بالزيت (الحامض- البيروكسيد- اليودي- التصبن- معامل الانكسـار) وأهمية تقديرها.

مستوى الأاءا المطلوب : أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪.

الوقتت المتوقِ للتدريب على الجدارة: 7 سـاعات.

الوسائل المساعلة: سحاحة- ماصة- دورق مخروطي سعة . . ا مل- حمام مائي- دليل فينول فيثالين- هيدروكسيد بوتاسيوم 1•• عياري- إيثانول- جهاز سوكسيليت- كستبان ورقي- إثير
بترولي- ميزان حسـاس- فرن كهربائي.

متطلبـات الجدارة: أن يكون المتدرب قادرا على تقدير النسبة المئوية للزيت پٌㅇ الأغذية وكذلك الثوابت الخاصة بالزيت والفائدة من تقديرها وهي الحموضة- البيروكسيد- الرقم اليودي- رقم التصبنمعامل الانكسـار.

الزيّبوتو الدهون في الأغلّية

أولا : تقلير نسبة الزيت
يعتمد هذا التقدير على أساس استخلاص الزيت من العينة بواسطة أحد مـذيبات الـدهن وهـو عـادةً
 المتبقي وحسـاب نسبته للعينة المستخدمة وِّ التقدير. الأدواتوالمحاليل اللازمة:

ا- جهاز سوكسليت بجميع أجزائه (شكل V)

$$
\begin{aligned}
& \text { r- إثير بترولي درجة غليانه من •ع إلى •7 } \\
& \text { غ- حمام مائي. } \\
& \text { 0- ميزان حسـاس. } \\
& \text { 1- }
\end{aligned}
$$

شكل (V) جهاز سوكسلت لاستخلاص الزيوت والدهون.
طريقة التقلير :

- ا-

الكستبان بالقطن لمنع وصول أجزاء من العينة إلى القابلة. ضr الكستبان وبه العينة وٌ جزء الاستخلاص من جهاز سوكسليت.
ع- أضف الإيثير البترولي إلى العينة بحيث يكفي لعمل ${ }^{\text {ا مرات سيفون على الأقل. }}$ 0- شغل المكثف المائي واستتمر پٌ التسخخين لمدة ا سـاعة. 7- ارفع الكستبان وبه العينة واستمر يِ التسـخين لإزالة المذيب.

المذيب يٌ الدورق).

9- أحسب وزن الزيت بالدورق و \% للزيت بالعينة من المعادلة التالية.
وزن الدورق وبه الزيت - وزن الدورق فـارغ

$$
1 \cdots X \longrightarrow \text { للزيت = }
$$

وزن العينـة (جم)

ثـثيـا : تقلير رقمم الحامض وحموضة الزيت Determination of acid value and acidity of oils تعريف رقّم الحامض :

هو عدد ملليجرامـات البوتاسـا الكاوية الـلازمة لمعادلة الأحماض الدهنية الحرة ٌِْواحد جرام من

$$
\begin{aligned}
& \text { الزيت أو الدهن،وهو يتخخذ كهقياس للتحلل المائي الذي يحدث للدهن. } \\
& \text { أهمية تقّلير رقّم الحامض: } \\
& \text { ا- عن طريقه يمكن معرفة مدة صـلاحية الزيت للاستهـلاك الآدمي. } \\
& \text { Y- بـرفة مدى التزنخ الحادث للزيوت. }
\end{aligned}
$$

ץ- تدرج الزيوت على أسـاس رقم الحامض ،أكبر من الواحد الصـحيح يعني أن هذا الزيت رديء الجودة. ع- يتخذ كهقيـاس لظروف التخزين السـابقة قبل عملية إنتاج الزيت، حيث إنـه تزداد كهيـة الأحمـاض الدهنية الحرة يٌِ الزيت أو الدهن بفعل الإنزيمـات والحرارة والهواء وبعض أنواع البكتريا أثناء التخزين غير الجيد للبذور.

أساس التقلير :
تتقـيط الأحهـاض الدهنيـة الحـرة ِِْ وزنــة معلوهـة مـن الزيـت بواسـطة البوتاســا الكـاويــة معلوهـة العيارية يفّ وجود دليل الفينول فيثالين والكححول كعامل مسـاعد وترجـع أهميـة الكحـول إلى أنـه يسـاعد على إذابة الزيت وبالتالي يسـاعد على تفاعل القلوي مـع الأحهـاض الدهنية، والمعادلـة التاليـة توضـح كـيفيـة التفاعل:

كحول إيثايل- دليل الفينول فيثالين- بوتاسـا كاوية •1, ع عياري- ستحاحة- دورق مخروطي سعة . • ا مل- حمـام مـائي- ماصة مدرجة.

خطوات التقلير :

$$
\begin{aligned}
& \text { ا- ضع حوالي } 0 \text { جرام من الزيت أو الدهن المسـال پٌ دورق مخروطي. } \\
& \text { r- أضف Yo مل من الكحول المتعادل ورج بلطف. }
\end{aligned}
$$

ץ- سـخن الدورق على حمـام مـائي لمدة • ا دقائق حتى يمتزج الزيت بالكحول (تعتبر كتدفئة). ६- أضف إلى الدورق r- ع نقاط من دليل الفينول فيثالين وعادل الكمية المستخدمة بواسطة البوتاسـا الكاوية معلومة العيارية.

0- احسب النسبة المئوية للحموضة وكذلك رقم الحامض من المعادلات الآتية:.
$\frac{100 \text { X TV X N X M }}{\text { W X } 1000}=$
$\frac{\text { TV X N }}{\text { رقم الحامض }}$

$$
\begin{aligned}
& \text { حيث إن TV = حجم البوتاسـا الكاوية المستخدمة. } \\
& \text { = N } \\
& \text { = M } \\
& \text { = W } \\
& \text { الوزن المكافئ لــــ KOH يسـاوى 1. } 1 \text {. }
\end{aligned}
$$

مثال: عينة زيت غذائي لزم لمعادلة الحموضة الكـلية وِ • 1 جم منها •r مل بو ا يد عياريتها ^•و• عياري. احسب \% للحموضة مقدرة كـحامض أوليك ثم احسب رقم الحامض لها. الحل:

ثالثـ : تّقلير رقمم البيروكسيلد للزيت Determination of peroxide value of oils
تعريف رقّم البيروكسيلـ :
هو عبـارة عن عدد ملليمـكافئات البيروركسيد الموجودة فِّ كل كيلوجرام من الزيت.
أهمية تقلدير رقم البيروكسيلد :
يُجـرى هـا التقـدير لمعرفـة كـميـة البيروكسـيـدات الموجـودة يِخ الزيـت والنـاتجـة مـن تزنخـهه وتـدهور
صفاتاء أثنـاء التخزين.
أسـاس التقلير :
التفاعـل مـبني علـى أن البيروكســيدات المتكـونـة يٌِ الزيـت المتـزنخ لهـا القــدرة علـى أكســدة
اليوديـدات (I) إلى يـود (I) والــني يُجــرى تتقيطـه بالثيوكـبريتـات العياريــة ومـن ذلــك حســاب كميــة الأكسـجـين الممتص، والمعادلات الآتيـة تُوضـح ميكانيكيـة التفاعل :
\qquad
I

$$
\begin{array}{r}
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{COOH}+2 \mathrm{HI} \\
\mathrm{O}-\mathrm{OH} \\
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{COOH}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{OH}
\end{array}
$$

واليود المنفرد يتم تتقيطه بواسطة الثيوكبريتات
$2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \quad \mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
\qquad
خطوات التقدير :
ا- أذب 0 جـم مـن الزيـت يفٌ دورق بغطـاء مصـنفر وِ • • مـل هـذيب مـكـون مـن حـامض خليـك ثلجـي وكلوروفورم بنسبة Y: ا على الترتيب.

Y- أضف 0, • مل من محلول يوديد البوتاسيوم المشثبع.
r-

0- نقـط اليـود المنفـرد بواسـطة ثيوكبريتـات الصـوديوم ا••• عيـاري مـع الـرج بشــدة عنــد قـرب نقطـة النهاية لإزالة كل آثار اليود الموجودة.
7- أحسب رقم البيروكسيد من المعادلة الآتية: 1000 X N X V

1- يـجب إجراء تجربة Blank على المحاليل المستخخدمة يومياً وهذه التجرية يجب ألا تستهلك أكثر هـن 1, • مل من محلول ثيوكبريتات الصوديوم وإلا تم استتبدال المحاليل بهـحاليل أخرى حديثة التحضير. ץ
(أي يجب تماثل ظروف التقدير تمـاماً).

 يُوجد بها اليود بكمية بسيطة. - ي إجب إجراء جميع عمليات الرج والدورق مقفل الفوهة بإحكام. 7- حيث إن رقم البيروكسـيد يُعبر عن الأكسـجين النشط المتكـون وِ العينة فيـجـب أن تكـون جميـع المحاليل خالية منـه وذلك بإمرار غاز خامل خلالها.
 ثيوكبريتات الصوديوم 「 1 ••• ع فما هو رقم البيروكسيد لهذه العينة ؟ $17.5 \times 0.012 \times 1000$

رابعا :تقلير الرقتم اليودي للزيبوت Determination of iodine value of oils
تعريف الرقّم اليودي :
هو عبارة عن عدد جرامـات اليود التي يهتصها . • ا جرام من الزيت أو الدهن وهو يُتخــذ كهقيـاس لمعرفة درجة عدم تشبع الزيت أو الدهن.

ا- تُقسّمّم الزيوت على أسـاس الرقم اليودي إلى ثلاثة أقسـام هي:
 اليودي لها يزيد عن • •r ويُستخخدم هـا النوع من الزيوت وٍِ الطلاء والبويات والورنيش. ب- زيوت نصف جافة: وهي الزيوت التي تجف بيطء عند تعرضها للهواء ومـن أمثلتهـا زيـت تَبَّاع الشــمس والرقم اليودي لها يتراوح مـا بين . . ا- . جـ- زيوت غير جافة: وهي التي لا تجف بسهولة عنـد تعرضها للـجـو فـترة طويلـة ومـن أمثلتهـا زيـت الزيتون وزيت اللوز والرقم اليودي لها يقل عن . . Y- حسـاب كمية الأيدروجين اللازمـة لتشبع الروابط الزوجية خـلال عمليـة الهدرجـة، وِ عمليـة الهدرجـة يستلزم خفض الرقم اليودي (IV - IV 1 (IV) حيث إن (IV) الرقم اليودي للزيت المراد هـرجتـه و (IV) الـرقـه اليودي للزيت المهدرج ، النسبـة الوزنية للهيدروجين (X) الـلازمـة لتشـبع الـروابط المزدوجـة يُمـكـن إيجادهـا من المعادلة الآتية:
$\begin{aligned} 2.016 \mathrm{gm} \mathrm{H}_{2} & \equiv 253.8 \mathrm{gm} \mathrm{I}_{2} \\ \mathrm{X} & \equiv \mathrm{IV}-\mathrm{IV}_{1}\end{aligned}$

$$
\left(I V-I V_{1}\right) 2.016
$$

gm $\quad \mathrm{H}_{2} / 100 \mathrm{gm}$

الأحماض الدهنية غير المشبعة يُمكنها الارتباط باليود يو أمـاكن الرابطة الزوجية $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{COOH}+\mathrm{I}_{2} \longrightarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CHI}-\mathrm{CHI}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$ أي ان كل رابطة زوجية يدخل وِّ التفاعل معها جزئ واحد من الهالوجينات مثل الكلور أو البروم أو اليود. يُفضل استخدام اليود عن البروم والكلور لأن كلاً من البروم والكلور يرتبطـان بسـرعة بـالروابط
 الإحـلال تُستخدم مركبات Br I أو Cl I أو حمض البيروأيوديت H IO 4 أو

طرق تقتلير الرقّم اليودي :
Wijs method طريقة ويج

ط- ط وأسـاس هذه الطريقة هو استتخدام Iodine monobromide (IBr) النـاتج من خلط الـبروم مـع اليـود والـذي يُضـاف فِّ مخلـوط حهـض الخليـك ورابـع كلوريـد الكربـون إلى عينـة الزيـت وبعـد الوقـت المحــد للتفاعل (نصف سـاعة) يتم تقـدير اليـود الزائـدة المنفـرد بواسـطة إضـافة مححلـول يوديـد البوتاسـيوم والمعـايرة

المحاليل المستخدمةة :
 اليود بواسطة الحرارة ثم يُبرد المحلول وتُضـاف كمية كافيـة مـن الـبروم لتُضـاعف كميـة الهالوجينـات

 (مسـحوق حديث) ويُجفف قٌِ ورق ترشيح أو ورق نشّاف ويُكمل إلى التر بالماء على درجة الحـرارة التي ستُستعمل وٌِ التتقيط.

الغرفة.
ع- مححلول بوي (يوديد بوتاسيوم): يُذاب • 10 جم من يوديد البوتاسيوم ٌِِ مـاء ويُكَمل الحجم إلى لتر - - بتروليم إيثير أو كلوروفورم.

خطوات العمل:

Y- أضف 0 مل بتروليم أثير أو كلوروفورم ورج بلطف.
r- أضف إلى هحتويات الدورق بY مل من هحلول هـانس وغط الـدورق ورج جيـداً رحويـاً وضـع الـدورق يِّ الظلام لمدة نصف سـاعة (يُراعى الرج الرحوي من وقتٍ لآخر أثناء هذه المدة).

0- عاير محتويات الدورق باستخخدام ثيوكبريتات الصوديوم پِّ وجود دليل النشا (ץ نقط) وذلك حتى اختفاء اللون الأزرق مع الرج الثـديد وسـجل حـجم الثيوكبريتات A مل. 7- أجر تجربة بـلانك كمـا سبق وأحسب منها حجم الثيوكبريتات B مل.
 ^- أحسب رقم اليود للعينة من المعادلة الآتية: $(\mathrm{B}-\mathrm{A}) \times \mathrm{N} \times 127 \times 100$
$\frac{\text { الرقم اليودي }=1000}{}$
حيث إن:
= A
= B
عيارية ثيوكبريتات الصوديوم $=\quad \mathrm{N}$
127 = الوزن المكافئ لليود (1 (1))
ملحوظات:

1- يُفضل وزن العينة بطريقة الفرق لضـمان الوزن بدقة.
Y- يجب عدم تلوث جدار الدورق المخروطي بالعينة. r- يجب أن يـكون الدورق المخروطي جافاً تماماً لأن آثار الماء تُعطل سير التفاعل. ع- الزيوت أو الدهون الصلبة عادةً لها رقم يودي أقل من الزيوت السـائلة.

0- يـتراوح الـرقم اليـودي للزيـوت والـدهون النباتيـة والحيوانيـة بـين 70- • • ا وفـى زبـدة جـوز الهنـد

 الزيادة من اليود بهحلول ثيوكبريتات الصوديوم • M Y Y • ع عياري فلزم حجم مقداره Y مل وأجريت تجربة Blank وفيها لزم حـجم Y, Y مل مـ من ثيوكبريتات الصوديوم لمعادلة Y0 مل من محلول هـانس، احسـب الـرقم اليودي للعينـة

$$
1 \cdots X \quad 1 r 7,9 X \cdot, 11 r o X(r r-r v, r)
$$

$$
1 \cdot 1,0=
$$

الرقم اليودي =

$$
\ldots \quad X \quad \text {.riro. }
$$

خامسا : تقلير رقم التصبن للزيت Determination of saponification value of oils

تعريف رقم التصبن

هو عبارة عن عدد ملليـجرامـات البوتاسـا الكاوية الكـحولية الـلازمة لتصـبن واحد جـرام مـن الزيـت
أو الدهن.
أهمية تقليرير رقم التصبن:
1- التفرقة بين الزيوت والدهون الصالحة للأكل أو الزيوت والدهون من أصل معدني. r- r- يُمكن معرفة الوزن الجزيئي.
ب- حسـاب كمية القلوي الـلازمة لتصـبن كميـية معينـة من الزيت أو الدهن.
أسـاس التقليري :
يـتم تصـبن الزيـت بإضـافة زيـادة مـن البوتاســا الكاويـة الكـحوليـة 0, • عيـاري حتـى تمـام تصـبن الجليسـريدات والأحهـاض الدهنيــة والزيـادة مـن القلـوي تـنقط بحـامض. ويُنصـح عنــد التقـدير اسـتتخدام الكحول بـدلاً مـن المـاء وذلكـ لأن الكحـول مـذيب جيـد كمـا أنـه يمنـع تحلـل ملـح الحـامض (الصـابون)، ، والمعادلة التالية تُوضح كيفيـة التفاعل:

Triglyceride
Sodium hydroxide
Glycerol Sodium fatty acid salt

خطوات التقديلر :
المحاليل المستخلدمة :
الفينول فيثثالين. 1- خذ ه جرام من عينة الزيت أو الدهن المنصهر فِّ دورق مخروطي سعة • Y مل. Y- أضف إلى الدورق •0 مل هيدروكسيد بوتاسيوم (بو أ يد) كـحولية هو • عياري.

ケ- ركب مـكثاً هوائياً عاكسـاً على الدورق المخروطي وضعاه وِّ حمـام مـائي يغلي لمدة نصف سـاعة
 وقف الغليان).

ع- ضع 0 نقط من دليل الفينول فيثالـين. وعادل المتبقي بواسطة حامض يد كل العياري. - ا أجر تقدير Blank مُكَرراً نفس الخطوات السابقة.

7- أحسب رقم التصـبن للعينة من المعادلة الآتية: $\left(V_{2}-V_{1}\right) \times N \times 56.1$
رقم التصبن =

حيث إن:
= $=V_{1}$ = حجم حمض الأيدروكلوريك ٌِ حالة البـلانك (مل) عيارية حمض الأيدروكلوريك المستخدم $=\quad$ N = W
56.1

ملحوظات:
1- يجب وضـع عينة الزيت وِ الدورق المخروطي دون أن تلوث الجـدران.
 الكحول عن • \% وذلك منـع تحلل صـابون البوتاسيوم المتـكون. ץ- يُفضل استخخدام هيدروکسيد البوتاسيوم (بو أ يد) عن هيدروكسيد الصوديوم (ص أ يـد) وذلـك لأن الصـابون النـاتج عن البوتاسـا الكاوية يتميز بـأنه صـابون رخو قابل لـلامتـزاج بالمـاء بسـهولة بعكس النـاتج من الصودا الكاوية.
ع - يُعرف انتهاء التصـبن عنـد اختفاء حبيبات الدهن أو الزيت من قاع الدورق.

0- تُجـرى عمليـة التصـبن والتتقـيط بعيـداً عـن الهـواء بقــدر الإمكــان حيـث إن المحلـول الكـحـولي الــي للقاعدة يمتص ثاني أكسيد الكريون (ك أَ) من الهواء بسهولة كهـا يجب التقـدير الصـري Blank تحت نفس الظروف.

مثال: احسـب رقـم التصـبن لعينـة مـن الزيـت وزنهـا اوع جـرام إذا علـم أن حـجـم بـو أ يـــ المسـتخدمهة •0 هـل

عدد ملليمكـافئ هيدروكسيد البوتاسيوم المستخدمة = = 0 × عدد ملليمـكافئ الحامض اللازم لمعادلة الزيادة من هيدرووكسيد البوتاسيوم. 9,911 =., $20 \cdot 0 \times Y$ K
 $07,1 \times 1$ Y, ヶ^^

$$
\text { رقم التصـبن = } 17 \Lambda, 0=\square
$$

$$
\varepsilon, 1
$$

Refractive index سادسلا : معامل الانكسـار
 ودقيقة عن مدى نقاء عينة الزيت أو الدهن المختبر كذلك معرفة نوعية الزيت. العوامل التي تُؤثـر على معامل الانكسـار : ا-Y- الحرارة: يقل معامل الانكسـار بزيادة حرارة الزيت.
r- درجة عدم التشبع: يزداد معامل الانكسـار بزيادة درجة عدم التشبع. ع- الوزن الجزيئي: يزداد معـامل الانـكسـار بزيادة الوزن الجزيئي لـلأحمـاض الدهنيـة.

خطوات التقلير :

1- يُستخدم ٌِْ التقدير رفراكتوميتر آبي حيـث يُنظف المنشـور الثلاثي قبـل إجـراء التجربـة بواسـطة قطعة من القماش أو أي مذيب للدهون. r- تُصهر العينة وِّ حالة الشـحم وتُرشَح للتخلص من المواد الـُريبة وآثار الرطوبة.
 ع- بعـد التأكـد مـن نظافـة المنشـور وجفافـه تمـامـاً تُوضـع بضـع نقـط مـن العينـة علـى المنشـور ويُقفـل ويُترك لمدة حوالي دقيقتين لتأخذ العينة درجة حرارة الجهاز. - - يُضبط الضوء يِْ الجهاز ثم يُقرأ معامل الانكسـار ويُؤخذ متوسط عدة قراءات. 7- يُجـرى التعديل يٌ معامل الانكسـار يِّ حالة اختلاف حرارة العينة عن حرارة الجهاز كالآتي:

\pm	${ }^{0} \mathrm{r} \cdot \pm$	للزيوت
$\cdots \cdots \times 70 \pm$	$م^{0} \varepsilon \cdot \pm$	للدهون

مـع الوضـع يٌ الاعتبـار أن معامـل الانكســار يزيـد كلمـا انخفضـت درجـة الحـرارة، ويقل كـلمـا
 انخفاض حرارة العينة عن حرارة الجهاز.

تـلـريب وأسئلة

اسم التجربةة : تقدير نسبة الزيت.
أدوات التجربـــة :

الحسـابـات:

أسئلة: :
س ا : مـا الفرق بين الزيت والدهن؟

سץ : اذكر اسـم أهم المذيبات التي تستخدم پٌِ استخخلاص الزيوت

تـلريب وأسئلة

اسم التجربةة : تقدير رقم الحامض وحموضة الزيت.
النتائج :

النسبة المئوية لحموضة الزيت:
القـانون المسـتخـدم:
الحسـابات:

رقّم الحامض :
القانون المستخخدم: -
الحسـابات:

أسئلة:
سى : عرف رقم الحامض

سץ : اذكر ثلاثة فوائد تقدير رقم الحـامض

سזّ: علل أفضلية استخخدام KOH ِ2ِ عملية المعايرة بدلا من NaOH

سع : اذكر فائدة استخدام الكـحول ِِّ هذه التجربة

تـلـريب وأسئلة

اسم التجربةة : تقدير رقم البيروكسيد.
النتـائج:

- - - - - - - - - - -
 - - - - - - - - - - = - - - - - - - - - القانون المستخلدم:

تـدريب وأسئلة

اسهم التجربةة : تقدير الرقم اليودي.
النتـائج:
حجم ثيوكبريتات الصوديوم المستخخدمة وِ العينة.=- - - - -
حجم ثيوكبريتات الصوديوم المستخدمـة يِ البـلانك.=- - - - -- - - - - - - - - - - -

الوزن المكافئ لليود المستخدم يسـاوى IYV. القانوز المستخلدم:

سץ : مـا هي أقسام الزيوت تبعا للرقم اليودي .مع ذكر مثال لكل نوع؟

تـدريببوأسئلة

اسم التجربةة : تقدير رقم التصـبن للزيت.
النتتائج :
حجم حهض الأيدروكلوريك ِوْ حالة العينة.=- - - مل. حجم حهض الأيدروكلوريك ِ2ْ حالة البـلانك.=- - - مل. - - - - - = - - - - الوزن المكافئ لهيدروكسيد البوتاسيوم = 07,1

القانوز المستخلدم:

الوحدة التاسعة الزيوتوالدهون	ror تحليل الأغدية - عملي	التخصص تقنية\|لتصنيع الغذائي
	تلدريب وأسئلة	
		اسم التجربة : هعاهل

أمامك عينات مختلفة من الزيوت والدهون والمطلوب قياس معامل الانكسـار لها وتسـجيل النتائج

		الجدول التالي.	
معـامل الانكسـار بعد التعديل	درجة حرارة العينة	معامل الانكسـار	رقم العينة
			1
			r
			r

أسئلة:
س ا : اذكر أهميـة تقدير معامل الانكسـار للزيوت والدهون

سץ: اذكر اسـم الجهاز المستخدم هِْ تقدير معامل الانـكسـار- ثم وضـح كيفيـة استخخدامـه س٪: تكلم عن العوامل التي تؤثر على معامل الانكسـار.

المراجع

أولا : المراجع العربية

$$
\begin{aligned}
& \text { 1- أسـاسيات كيمياء الأغذية- ترجمـة د. حنفي عبدالعزيز هـاشم، د. أحمد عبدالمنعم عسـر- الدار } \\
& \text { 1997, العربية للنشر والتوزيع- القاهرة- جمهورية مصر العربية- }
\end{aligned}
$$

ץ- تحليل الأغذية- د. إبراهيم محمد حسن، د. عاطف أنور أبوعرب- دار الفجر للنشر والتوزيع-القاهرة- جمهورية مصر العربية- , r.

ץ- صناعة الزيوت والدهون- كيميائي فؤاد عبدالعزيز أحمد الشيخ- دار النشـر للجامعات المصريةمكتبة الوفاء- القاهرة- جمهورية مصر العربية-, 199r

ع- الكيمياء الحيوية الزراعية- د. محمد عبدالمنعم كمال- دار النهضة العربية للنشر- القاهرةجمهورية مصر العربية- 1971.

- - كيمياء وتحليل الأغذية- الطبعة الأولى- د. محمد أمـان، د. محمد يوسف- مكتبة المعارف الحديثة- الإسـكندرية- جمهورية مصر العربية- 1997.
7- كيمياء وتحليل الأغذية- د. مصطفى صفوت محمد، د. محمد حسيب حافظ رجب، د. هحمد البسيوني زويل- دار نشر الثقافة- الإسكندرية- جمهورية مصر العربية- 1977.

ثانيـا : المراجع الأجنبية
1- Akoh, C. C. and Min, D. B. (1997). Food Lipids: Chemistry, Nutrition and Biotechnology. Marcell Dekker, Inc., New York, Basel, Hong Kong.
2- AOAC (1995). Official Methods of Analysis, $16^{\text {th }}$ ed. AOAC International, Gaithersburg, MD.
3- AOCS (1980). American Oil Chemistry Society. Official Methods of Food Analysis. Am. Oil Chemiste Soc., Chicago.
4- Berette, R., Kochan, S. J. and Plenkoweski, J. J. (1984). Karl Fisher determination of water in oils and fats: International Collaboration Study. J. AOAC 67, 299-301.
5- Fennema, O. R. (1995). Food Chemistry. $3^{\text {rd }}$ ed. O. R. Fennema (Ed), Marcell Dekker, Inc., USA.
6- Harris, D. C. (1995). Quantitative Chemical Analysis, $4^{\text {th }}$ ed. W. Freeman (Ed), Champan and Hall, New York.
7- Hoffmann, G. (1986). Quality Control in the Food Industry. Vol. 1 and 2, $2^{\text {nd }}$ ed. Academic Press Inc. London. Ltd.
8- IUPAC (1979). Standard Methods for the Analysis of Oil, Fats and Derivatives $6^{\text {th }}$ ed.C. Paquot (Ed) Pergaman Press, New York.
9- Kosikowski, R. V. (1986). In membrane separations in Biotechnology, W. C. Mc Gregor (Ed). Pp. 201- 254. Marcell Dekker, Inc., New York.

10- Nilson, S. S. (1998). Food Analysis. $2^{\text {nd }}$ ed. An Aspen Publication, Aspen Publishers, Inc. Gaithersburg, Maryland, USA.
11- Pomeranz, Y. and Meloan, C. (1994). Food Analysis: Theory and Practice. $3^{\text {rd }}$ Champan and Hall, New York.
12- Wong, D. W. S. (1989). Mechanism and Theory in Food Chemistry. AVI., Van Nostrand Reinhold. New York.

المحتويـات

المحتويـات	lor تحليل الأغذية - عملي	التخصص تقنية التصنييع الغذأئي
الوحدة السابعة : الكربوهيلدات في الأغلّية		
أولا : تقلدير السكريـات المختزلة كميـا		
تحضير مستخلص السكر للتقدير الـير		
Lane-Eynon تقلير السكريـات المختزلة بواسطة طريقة		
ثانيا : تقدير النشا في الأغلية Determination of Starch in Foods		
Weende ثالثا : تقدير الأليـاف الخام بطريقة وينلي		
تـلريب وأسئلة.		
الوحلدة الثامنة : البروتينات في الأغلية		
أولا :تقلدير البروتين الكلى في الأغذية Determination of total protein in foods		
ثV.......................... Determination of non-protein nitrogen in foods ثانيـا : 7 :		
7^.. تلـ.		
V • ... الوحلـ.		
V) .. Oil content أو.		
ث V ¢ ... Determination of peroxide value of oils		
V0.. Determination of iodine value of oils رابعا :		
VV ...		
תr..		
$\wedge 9$.		المراجع

