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I. BACKGROUND

Whether enjoying the luxury of a bubble bath or enduring the drudgery
of washing dishes, one is likely to be struck by the beauty and intricate
structure of foams, froths, or ‘‘suds.’’ Keen observers may even notice the
unusual elastic and yield properties, not seen in the constituent aqueous and
gaseous phases. Scientifically, the interest in and the study of foams have been
truly multidisciplinary and have not been confined to chemists, engineers,
and physicists. Foams have traditionally inspired mathematicians for
their geometric properties and as equilibrium structures in which the surface
area is minimized (1). Metallurgists (2) have realized the similarity between
foams and polycrystalline metals, both in their structure and coarsening
behavior (grain growth). Similarly, botanists and life scientists in general
have noticed strong structural parallels between foams and living tissues (3).

Gas–liquid foams are abundant in nature and their technological
applications are numerous. They are used to advantage in fire fighting,
enhanced oil recovery, foods (e.g., whipped cream), cosmetics (e.g., shaving
cream), and in many other ways. The ‘‘world of foams’’ may be considerably
expanded by the realization that concentrated liquid–liquid emulsions,
although generally characterized by a much smaller mean size of the
dispersed units, are structurally identical to gas–liquid foams, which is
readily revealed under the microscope. Macroscopically, they behave like
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viscoelastic gels, mayonnaise being a good example. Such emulsions have
been variously referred to as high-internal-phase-ratio emulsions (HIPREs),
biliquid foams, ‘‘aphrons,’’ or, simply, highly concentrated emulsions.
Although they lack the compressibility of gas–liquid foams, they behave
similarly in all other respects. Detailed study of such emulsion systems
started rather recently and may perhaps be traced to the attempts of
Lissant (4–6) and Beerbower et al. (7–10) to design safer aviation and
rocket fuels, in which fuel droplets are tightly packed inside a continuous
aqueous phase. Reverse (i.e., concentrated water-in-oil) systems can be
readily prepared as well. They find application in the high-explosives area,
but have particular appeal in the foods and cosmetics industries. What
entrepreneur’s mouth would not water at the prospect of being able to
sell a product that is at least 90% water and yet is luxuriously rich and
creamy? Lissant, in particular, patented numerous potential applications in
these areas (e.g., Ref. 11). In yet other applications, the oil phase, either
external or internal, can consist of a polymerizable monomer. Subsequent
polymerization by heat or radiation can lead to interesting polymers or
structurally unique materials (e.g., Refs. 6 and 12–16).

Because of all of these scientific and technological aspects, a thorough
understanding of foams and concentrated emulsions is highly desirable. In
response to this need, there has lately been a clear upsurge in interest, again
from a variety of disciplines, and considerable progress has been and is
being made. Several comprehensive textbooks on emulsions and foams
have recently been published (17–22). We believe that the overlap with
this review is minimal.

II. INTRODUCTION

In general, when a fluid phase (liquid or gas) is dispersed in an immiscible
liquid to form drops or bubbles, there is a tendency for the phases to
separate again to reduce the augmented surface free energy. With pure
phases, this proceeds by rapid coalescence of approaching dispersed entities,
as there is no barrier against rupture of the intervening liquid film. Stability
or, more correctly, metastability can be conferred by adsorption of surfac-
tants, polymers, or finely divided solid particles at the interface. By this
expedient, coalescence can often be suppressed completely. However, this
will not prevent ultimate phase separation, as there is another mechanism
for reducing the surface area, namely Ostwald ripening. By this mechanism,
large bubbles or drops grow at the expense of small ones by dissolution and
diffusion of the dispersed phase in response to the higher Laplace pressure in
the latter ones. Because gases tend to have greater solubility and diffusivity
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in a given continuous liquid than do most other liquids, this process is
generally much more rapid in foams than in emulsions. Indeed, whereas
most foams will not survive for more than a few hours—even in the absence
of coalescence—it is relatively easy to prepare concentrated emulsions
whose drop size distribution does not change perceptibly for months
or years. They are kinetically or operationally (although not thermodyna-
mically) stable. For this and many other reasons, emulsions may be better
characterized and their properties more reliably investigated experimentally
than is possible with foams. Thus, to learn about foam behavior through
experiments, we recommend one look at concentrated emulsions instead. In
the same vein, we may use the terms ‘‘bubble’’ and ‘‘drop’’ interchangeably.

In this review, we will only consider stable dispersions, in which coa-
lescence has been totally suppressed. We further restrict ourselves to highly
concentrated dispersions, in which the volume fraction of the dispersed
phase, �, exceeds a critical value �0 where the properties start to change
drastically. This critical volume fraction corresponds to that of a system of
close-packed spheres having the same drop volume distribution as the dis-
persion. The term ‘‘close packed’’ is somewhat ambiguous and the corre-
sponding volume fraction is not always clearly defined and/or established.
Although monodisperse spheres can, in principle, be packed to a maximum
density of �0¼ 0.7405, this value is rarely achieved. In practice, one is more
likely to achieve only random close packing, which is considerably less dense
(�0� 0.64) due to the voids created by ‘‘arching.’’ There is a persistent myth
that the packing density of a polydisperse system is characterized by
�0>0.7405. It is true that the voids in a close-packed system of spheres
can be filled sequentially with smaller and smaller spheres of very specific
sizes until �0� 1. However, this would require a unique multimodal size
distribution as well as a unique spatial distribution, neither of which are
likely to be ever encountered in practice. It is our experience with typical,
unimodal polydisperse emulsions that the spherical droplets arrange
themselves at a packing density that, although considerably larger than
the 0.64 expected for the random close-packed monodisperse case, is close
to but slightly smaller than 0.74. Although the actual value must
depend somewhat on the details of the size distribution, we estimate that
0.70< �0<0.74 in most practical cases, where conventional means are used
to prepare the emulsion (23,24).

There are reasons why the effective value of �, including that of �0,
may deviate from the apparent value. If the thickness, h, of the stabilized
film of continuous phase, separating the dispersed drops or bubbles, is not
insignificant compared to the drop or bubble radius, R, then the effective
volume of each drop must be augmented by that of a surrounding sheath of
thickness h/2. This leads to a somewhat larger effective volume fraction,
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�e, which is given (23) by

�e ¼ � 1�
�

�0

� �1=3
h

2R

" #�3

� � 1þ
3:15h

2R

� �

ð1Þ

The latter form is a good approximation for any �>�0 and h/R<<1. In
most foams, the effect is expected to be minimal, as the bubbles tend to be
relatively large. For emulsions of small drop size, however, the effect may be
considerable and the peculiar properties resulting from extreme crowding
may commence at an apparent volume fraction that is considerably smaller
than one would expect for zero film thickness. For example, in an emulsion
with droplets of 2R¼ 1 mm and h¼ 50 nm, the effective volume fraction
already reaches a value of 0.74 at an apparent volume fraction of only
about 0.64! The finite film thickness may, for example, result from electro-
static double-layer forces (25) or adsorbed polymers. In what follows, we
shall assume zero film thickness, with the understanding that Eq. (1) is to be
invoked whenever h/R 6¼ 0.

Another complication arises when strong attractive forces operate
between the drops or bubbles. This may lead to a finite contact angle, �,
between the intervening film (of reduced tension) and the adjacent bulk inter-
faces (23,26–28). Under those conditions, droplets will spontaneously deform
into truncated spheres upon contact and can thus pack to much higher den-
sities. For monodisperse drops, the ideal close-packed density, consistent
with minimization of the system’s surface free energy, is given (23) by

�0ð�Þ ¼ 0:7405 �
5

cos3 �
þ

9

cos2 �
� 3

� �

ð2Þ

which is valid up to �¼ 30�, where �0¼ 0.964. For �¼ 0, we recover
�0¼ 0.7405, and �0 is expected to reach unity when � exceeds 35.26�

(23,28). In the latter limit, all of the continuous phase (except that in the
intervening films) should, in principle, be squeezed out spontaneously. In
practice, however, one tends to find just the opposite; that is, when � is
large, the droplets spontaneously flocculate into a rather open structure in
which �0<0.7405. The situation is similar to that of a flocculated solid
dispersion whose sediment volume is generally greater than that of a stable
dispersion. Apparently, the strong attractive forces prevent the droplets from
sliding into their energetically most favorable positions, leaving large voids in
the otherwise dense structure. Nevertheless, the structure may be irreversibly
densified to approach the condition prescribed by Eq. (2) by centrifugation
and subsequent relaxation (23,27). Foams and emulsions in which � 6¼ 0 have
only been studied occasionally and will rarely be touched upon in this review.
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III. STRUCTURAL ELEMENTS

As discussed earlier, the nature and properties of fluid–fluid dispersions
start to change drastically when the volume fraction approaches or exceeds
�0. A certain rigidity sets in, because the drops or bubbles can no longer
move freely past each other.

As the volume fraction is raised beyond �0, the drops lose their spheri-
city and are increasingly deformed while remaining separated by thin stable
films of continuous phase. At sufficiently high �, the drops become dis-
tinctly polyhedral, albeit with rounded edges and corners. At this stage,
the continuous phase is confined to two structural elements: linear Plateau
borders with an essentially constant cross section over some finite length,
and tetrahedral Plateau borders, where four linear borders converge (Fig. 1a).

Each linear border is generally curvilinear and fills the gap between the
rounded edges of three adjoining polyhedral drops. In cross section, its sides
are formed by three arcs, each pair of which meets tangentially to form the
thin film separating the corresponding droplet pair (Fig. 1b). The pressures in
the drops are related to the mean curvatures of the intervening films through

p1 � p2 ¼ 2	C12

p2 � p3 ¼ 2	C23

p3 � p1 ¼ 2	C31

ð3Þ

where 	 is the interfacial tension between the continuous and dispersed
phases and the sign of each film curvature C is taken positive (negative)

Figure 1 (a) Four linear Plateau borders meeting in a tetrahedral plateau border;

(b) cross section through a linear Plateau border and its three associated films and

drops.
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if the pressure in the drop indicated by the first index is the higher (lower)
one. Adding Eqs. (3) leads to the following relationship between the three
mean film curvatures:

C12 þ C23 þ C31 ¼ 0 ð4Þ

The pressure inside the linear Plateau border, pb, is given by

pb ¼ p1 � 	c1 ¼ p2 � 	c2 ¼ p3 � 	c3 ð5Þ

where c1, c2, and c3 are the curvatures of the border walls and are all counted
as positive. Since all Plateau borders are connected, they are in hydrostatic
equilibrium.

Normally, an ambient gaseous atmosphere of pressure P surrounds the
dispersion. Relative to this ambient pressure, pb is lower and given (29) by

pb ¼ P� 	c Ctj j ð6Þ

where Ctj j is the absolute value of the curvature of the free continuous-phase
surface at the dispersion–atmosphere boundary (i.e., between the exposed
bubbles) and 	c is the surface tension of the continuous phase [	c¼ 	 for
foams, but 	c 6¼ 	 for emulsions (29) unless the ‘‘ambient atmosphere’’ con-
sists of bulk dispersed liquid].

The excess pressures in the drops, relative to that in the interstitial
continuous phase, pb, are often referred to as their capillary pressures, pc.
For example,

ð pcÞ1 ¼ p1 � pb ¼ 	c1 ð7Þ

It is clear that, in general, the capillary pressure varies from drop to drop.
When Eqs. (3) are combined with Eqs. (5), the following relationships

between the curvatures of the films and those of the Plateau border walls are
obtained:

2C12 ¼ c1 � c2

2C23 ¼ c2 � c3

2C31 ¼ c3 � c1

ð8Þ

For each film to be stable, it must be able to develop an internal,
repulsive disjoining pressure �d to counteract the capillary suction acting
at the film–Plateau border junction. At equilibrium, it can be readily shown
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from the above that

ð�dÞ12 ¼
	ðc1 þ c2Þ

2

ð�dÞ23 ¼
	ðc2 þ c3Þ

2

ð�dÞ31 ¼
	ðc3 þ c1Þ

2

ð9Þ

Thus, the disjoining pressures in three confluent films are, in general,
unequal. It turns out that the difference in the disjoining pressures in two
of the films is defined by the curvature of the third film. For example,
from Eqs. (9) and (8),

ð�d Þ31 � ð�dÞ23 ¼
	ðc1 � c2Þ

2
¼ 	C12 ð10Þ

[The inequality of the disjoining pressures implies that the films may have
slightly different equilibrium thicknesses and tensions. In extreme cases (30),
this may lead to sensible deviations from Plateau’s first law of foam
structure, stated below.]

As the volume fraction approaches unity, the linear Plateau border
shrinks into a line. In this ‘‘dry-foam’’ limit, mechanical equilibrium
demands that the three films—of presumed equal tensions—meet pairwise
at angles of 120� along this line (Plateau’s first law of foam structure).
However, even when the Plateau border is finite and the films do not really
intersect, the principle may well hold when applied to the virtual line of
intersection that is obtained when the films, while maintaining their curva-
tures, are extrapolated into the border (dashed lines in Fig. 1b). A rigorous
proof has been published by Bolton and Weaire (31) for two-dimensional
(2D) foams, in which the Plateau borders are rectilinear. To our knowledge,
no proof has yet been presented for the more general case of curvilinear
borders in three-dimensional (3D) space. In fact, because the Plateau border
can be viewed as a line with a line tension (32), this broader statement of
Plateau’s first law may not strictly apply when the border has some finite
longitudinal curvature.

A tetrahedral Plateau border is formed by the confluence of four
linear Plateau borders (Fig. 1a). It fills the gap between the rounded corners
of four adjoining polyhedral drops. The pressure in the tetrahedral border
is, of course, equal to that in each of the outgoing linear borders, which sets
the curvature of each of its four bounding walls. In the dry-foam limit
(�! 1), the tetrahedral border reduces to a point (‘‘vertex’’ or ‘‘node’’),
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where the four linear borders meet pairwise at the angle of cos�1(�1/3)¼
109.47� (Plateau’s second law of foam structure). The principle probably
remains valid for finite borders, when applied to the point where the four
virtual lines of film intersection (see Fig. 1) meet upon extension into the
tetrahedral border.

IV. OVERALL STRUCTURE AND OSMOTIC PRESSURE

Having described the structural elements of foams approaching the dry-
foam limit (�!1), it is still a daunting task to describe the structure and
properties of the system as a whole. The task is even more difficult for
systems in which �0 is exceeded, but the polyhedral regime has not yet been
reached. In this case, the drops have exceedingly complex shapes, and linear
and tetrahedral Plateau borders, as defined earlier, are not present. Much
can be learned about the qualitative behavior by considering 2D model
systems, in which the drops do not start out as spheres but as parallel
circular cylinders and tetrahedral plateau borders do not arise. We shall
first consider the particularly simple, perfectly ordered monodisperse case,
with a subsequent gradual increase in complexity.

[Lest the reader think that 2D foams are just figments of the imagina-
tion, it must be pointed out that they can be generated—or at least closely
approximated—by squeezing a 3D foam between two narrowly spaced,
wetted, transparent plates (2,33–37). Structurally, even closer realizations
may be obtained in phase-coexistence regions of insoluble monolayers of
surface-active molecules at the air–water interface (38), where the role of
surface tension is taken over by the line tension at the phase boundaries.]

A. Monodisperse, Perfectly Ordered 2D System

Such a system has been discussed in detail in Ref. 39. In the absence
of gravity, the circular cylinders of radius R arrange in hexagonal packing
(Fig. 2a) at a volume fraction �0¼�/2

ffiffiffi
3

p
¼ 0.9069. In cross section, each

circular drop can be thought to be contained within a regular hexagon of
side length a0¼ 2R/

ffiffiffi
3

p
. As the volume fraction is increased, the drop is

flattened against its six neighbors to form a hexagon of side length a
(<a0) but with rounded corners described by circular arcs of radius r
(Fig. 2b). At constant drop volume, one finds

r

R
¼

�0
1� �0

� �1=2
1� �

�

� �1=2

ð11Þ
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The capillary pressure in each drop is given by pc¼ 	/r or, when scaled by
the initial capillary pressure ( pc)0¼ 	/R, by

~ppc ¼ pc=ð pcÞ0 ¼ R=r ð12Þ

In the above process, the surface area of each drop, per unit of length,
increases from S0¼ 2�R to S¼ 6(a� 2r/

ffiffiffi
3

p
)þ 2�r, which, at constant drop

volume, can be shown to lead to

S

S0
¼

1

ð�0�Þ
1=2

1� ð1� �0Þ
1=2

ð1� �Þ1=2
� �

ð13Þ

This function has been plotted in Fig. 3. In the limit of �¼ 1, the scaled surface
area reaches a maximum that is given by

S1

S0
¼

1

�1=20

¼ 1:0501 ð14Þ

The scaled surface area and its variation with � are of crucial impor-
tance in the definition and evaluation of the osmotic pressure, �, of a foam
or emulsion. We introduced the concept in Ref. 39, where it was referred to
as the ‘‘compressive pressure,’’ P. It has turned out to be an extremely
fruitful concept (24,29,40). The term ‘‘osmotic’’ was chosen, with some
hesitation, because of the operational similarity with the more familiar
usage in solutions. In foams and emulsions, the role of the solute molecules
is played by the drops or bubbles; that of the solvent is played by the
continuous phase, although it must be remembered that the nature of the
interactions is entirely different. Thus, the osmotic pressure is defined as
the pressure that needs to be applied to a semipermeable, freely movable

Figure 2 (a) Uncompressed cylindrical drops in hexagonal close packing

(�¼�0¼ 0.9069); (b) compressed drop (0.9069<�<1).
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membrane, separating a fluid–fluid dispersion from its continuous phase,
to prevent the latter from entering the former and to thereby reduce the
augmented surface free energy (Fig. 4). The membrane is permeable to all of
the components of the continuous phase but not to the drops or bubbles.
As we wish to postpone discussion of compressibility effects in foams until
later, we assume that the total volume (and therefore the volume of the
dispersed phase) is held constant.

Figure 3 Scaled surface area, S/S0, for monodisperse 2D drops as a function of

volume fraction.

Figure 4 Semipermeable membrane separating dispersion from continuous phase;

pressure to prevent additional continuous phase from entering the dispersion is the

‘‘osmotic’’ pressure,�. [FromRef. 40. Copyright (1986) American Chemical Society.]
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As long as the membrane is located high up in the box in Fig. 4,
the emulsion or foam may be characterized by �< �0 and �¼ 0. As the
membrane moves down, a point is reached where �¼�0. Any further down-
ward movement requires work against a finite pressure �, reflecting the
increase in the total surface area as the drops are deformed; that is,

�� dV ¼ �� dV2 ¼ 	 dS ðconstant V1Þ ð15Þ

where V is the dispersion volume, V1 is the volume of the dispersed phase,
V2 is the volume of the continuous phase in the dispersion, and 	 is assumed
to be constant. Because V¼V1þV2 and �¼V1/V, Eq. (15) leads to the
completely general expression

� ¼ 	�2
dðS=V1Þ

d�
¼ 	�2

S0

V1

dðS=S0Þ

d�
ð16Þ

where S/V1 is the surface area per unit volume of the dispersed phase.
Alternatively, as shown in Ref. 29, � may be equated to the pressure
difference between an ambient atmosphere and the continuous phase in
the dispersion, or from Eq. (6):

� ¼ P� pb ¼ 	c Ctj j ð17Þ

For yet a third useful way to express �, see Refs. 24, 29, and 40.
For the special case of a monodisperse 2D system,

S0

V1
¼

2

R
ð18Þ

which, when combined with Eqs. (16) and (13), results in

� ¼
	

R

�

�0

� �1=2
1� �0
1� �

� �1=2

�1

" #

ð19Þ

or, in reduced form,

~�� �
�

	=R
¼

�

ð pcÞ0
¼

�

�0

� �1=2
1� �0
1� �

� �1=2

�1

" #

ð20Þ

where �0¼ 0.9069. Figure 5 shows the dependence of ~�� on �.
The suggestion has been made (Exerowa, personal communication,

1990), since withdrawn (20,41), that � and pc are really identical. It is
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clear from the above that this is not so. In fact, examination of Eqs. (20),
(11), and (12) shows that, at least for this simple model system,

~ppc � ~�� ¼
�

�0

� �1=2

ð21Þ

At �¼�0,

~ppc � ~�� ¼ 1 ð22Þ

At the upper limit of �¼ 1,

~ppc � ~�� ¼ ��1=2
0 ¼

S1

S0
¼ 1:0501 ð23Þ

Both ~ppc and ~�� tend to infinity in this limit, but the relative difference
between them tends to zero. This is the regime of concern in much of
the interesting work of Exerowa et al. (e.g., Refs. 42 and 43), where
the difference between the capillary and osmotic pressures may there-
fore, indeed, be safely ignored (41). However, this is not so in general
and we shall demonstrate in Sect. V that � is a much more useful
and informative parameter than pc.

Before leaving this topic, it should be mentioned that modifications of
most of the above expressions have been derived to take account of finite
film thickness, finite contact angle at the film–Plateau border junction, or

Figure 5 Reduced osmotic pressure as a function of � for a perfectly ordered 2D

system.
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both (39). Finally, it must be realized that a monodisperse 2D system does
not necessarily pack in the perfectly ordered, hexagonal state depicted in
Fig. 2. Herdtle et al. (personal communication, 1993) have constructed
highly disordered, yet monodisperse 2D dry foams with periodic boundaries
(Fig. 6), in which all films meet at angles of 120� and all film curvatures
satisfy Eq. (4). In a sense, these systems are monodisperse only in a
volumetric sense, but are topologically disordered or ‘‘polydisperse.’’ They are
equilibrium structures, whose surface energy, although at a local minimum,
must be higher than that of the perfectly ordered hexagonal system. Because
the bubble pressures are not the same, such a system is bound to coarsen,
thereby reducing its total surface energy. In practice, disorder of this type
may be imposed by the finiteness of any system with bounding walls. If the
walls are wetted by the continuous phase, then the outer films must be
directed normal to the walls, which is generally incompatible with a perfectly
ordered internal structure. As we shall see, this complication arises in 3D
foams as well.

Figure 6 Topologically disordered, but volumetrically monodisperse 2D system

(�¼ 1) with periodic boundaries; each shade corresponds to drops with a certain

number of sides (e.g., the unshaded drops all have six sides). (Courtesy of T. Herdtle

and A. M. Kraynik.)
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B. Polydisperse 2D Systems

In the last decade or so, much progress has been made toward a more
complete understanding of these disordered structures. Most work relies on
the computer generation of disordered (volumetrically) polydisperse struc-
tures with periodic boundary conditions, in which the film angles and curva-
tures obey the rules set forth in Sect. III. For a recent review, see Ref. 33. An
example, taken from Ref. 44, is shown in Fig. 7. The structure contains many
bubbles that are not hexagons, but it is readily proven that the average
number of sides is still six (44). Simpler and very special types of (volumetric)
polydispersity and disorder have been considered by Khan and Armstrong
(45) andKraynik et al. (46). In these cases, illustrated in Fig. 8, the topology is
preserved. All bubbles are still hexagons and all films remain flat; the bubbles,
therefore, do not coarsen with time. The first system (Fig. 8a) is simply
bimodal and is obtained by increasing or decreasing the height of all bubbles
in a given row. The second system (Fig. 8b) is much more disordered and can
be generated from the monodisperse system by randomly increasing (or
decreasing) each bubble area, as illustrated in Fig. 9, with the limitation
that no vertices ever touch or cross over, lest Plateau’s first law be violated
and resultant (so-called T1) rearrangements lead to a much more complex
structure. The total surface area is not affected by such transformations, so
that, as in the monodisperse case,

S1

S0
¼ 1:0501 ð24Þ

Figure 7 Computer-generated, topologically disordered and volumetrically

polydisperse 2D system (�¼ 1) with periodic boundaries. (From Ref. 44, with

permission from Taylor & Francis Ltd.)
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This is not necessarily true for the more general structures such as that
in Fig. 7, which is both volumetrically and topologically polydisperse.
Unfortunately, although presumably available as a result of the numerical
simulations, the value of S1/S0 and how it varies with the details of the size
distribution appear not to have been reported for these cases.

Starting from a dry-foam system as in Fig. 7, the volume fraction can
be lowered by ‘‘decorating’’ each vertex with a Plateau border, whose wall
curvatures obey the rules set forth in Sect. III (31). As the volume fraction is
lowered by increasing the size of the Plateau borders, a point is soon reached
where adjacent Plateau borders ‘‘touch’’ and subsequently merge into single
four-sided borders. Bolton and Weaire (47) have followed this process down

Figure 8 (a) Simplest case of volumetrically bimodal 2D system; (b) more highly

disordered, volumetrically polydisperse hexagonal 2D system (�¼ 1). The cluster

of darkly outlined drops forms the repeating unit. (Courtesy of A. M. Kraynik.

Similar structures appear in Ref. 46.) In both cases, the system is topologically

‘‘monodisperse.’’

Figure 9 Recipe for creating a volumetrically polydisperse (but topologically

monodisperse) hexagonal system from perfectly ordered 2D system; total surface

energy remains unchanged.
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to the volume fraction �c, where all bubbles are spherical and structural
rigidity is lost. This is perhaps the most satisfactory definition of �0.
Their finding suggests that, for that particular system, �c equaled 0.84
(not 0.9069), which happens to be close to the random packing density of
(monodisperse) circular disks. Using similar computer simulations, Hutzler
and Weaire (48) calculated the osmotic pressure and found it to obey
Eq. (19) closely in the ‘‘drier’’ regime. It started to deviate at lower
volume fractions and did not reach zero until � dropped to about 0.82,
which is close to � at the rigidity loss transition.

C. Monodisperse 3D Systems

Ideally, uniform spheres arrange in ‘‘hexagonal close’’ packing, which is
face-centered cubic (fcc), at �0¼�

ffiffiffi
2

p
/6¼ 0.7405. The role of the circum-

scribing hexagon in monodisperse 2D systems is taken over by the rhombic
dodecahedron (Fig. 10). As the volume fraction is raised, each drop flattens
against its 12 neighbors. This process has been described by Lissant (4,5),
who considered the drop to be transformed into a truncated sphere and each

Figure 10 Spheres in hexagonal close packing (fcc), each occupying a rhombic

dodecahedron. (From Ref. 4, with permission from Academic Press.)
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film to be circular, at least until it reaches the sides of the diamond faces
(Fig. 11). This is incompatible with a zero contact angle at the film edge.
Moreover, at constant drop volume, this model would imply decreasing
capillary (and osmotic) pressure with increasing �, which is clearly incon-
sistent. In reality, the problem is much more complicated; the drop cannot
remain spherical and the films must be noncircular. Using Brakke’s now
famous ‘‘Surface Evolver’’ computer software (49), Kraynik and Reinelt
(50), and Lacasse et al. (51) have correctly and accurately solved this
problem for this and other structures (discussed later in this subsection).

As suggested already by Lissant (4,5), the packing is likely to change
above some critical value of �. It is clear that if the dodecahedral packing
were to persist up to �¼ 1, Plateau’s second law would be violated at 6 of
the 14 corners of the polyhedron, because 8 linear borders would converge
there, rather than the mandatory 4. Lissant proposed that the structure
changes to a body-centered cubic (bcc) packing of planar tetrakaidecahedra
(truncated octahedra; see Fig. 12a). However, such a structure satisfies
neither of Plateau’s laws. In this dry-foam regime, Kelvin’s ‘‘minimal

Figure 11 Each drop flattens against its neighbors as the volume fraction

increases; a stable thin film of continuous phase separates neighboring drops. (From

Ref. 4, with permission from Academic Press.)
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tetrakaidecahedron’’ (Fig. 12b), which is obtained by slight distortion of its
planar counterpart, solves this problem and has long been considered as the
most satisfactory candidate for the drop shape. It has 6 planar quadrilateral
faces, 8 nonplanar hexagonal faces of zero mean curvature, and 36 identical
curved edges. In a space-filling ensemble of such polyhedra, Plateau’s first
and second laws are fully satisfied. Kelvin derived approximate expressions
for the shape of the hexagons and the sides (52–54). Based on that model,
Princen and Levinson (55) calculated the length of the sides and the surface
areas of the quadrilateral and hexagonal faces, relative to those of the parent
planar tetrakaidecahedron of the same volume. They arrived at the follow-
ing result for the increase in surface area as a spherical drop transforms into
a Kelvin tetrakaidecahedron of the same volume:

S1

S0
¼ 1:0970 ð25Þ

(This compares to values of 1.0990 for the planar tetrakaidecahedron, 1.1053
for the rhombic dodecahedron, and 1.0984 for the regular pentagonal
dodecahedron. The latter—although often considered as a unit cell in foam
modeling—is not really a viable candidate either, as it not only violates
Plateau’s laws but is also not space filling.)

More recently, Reinelt and Kraynik (56) have carried out more exact
numerical calculations on theKelvin cell, leading to the slightly higher value of

S1

S0
¼ 1:0972 ð26Þ

Kelvin’s polyhedron would indeed represent the ideal drop shape in the
dry-foam limit by effecting, in Kelvin’s own words, ‘‘a division of space with

Figure 12 (a) Planar tetrakaidecahedron (or truncated octahedron); (b) Kelvin’s

minimal tetrakaidecahedron (bcc).
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minimum partitional area,’’ if he had added the proviso that this division is to
be accomplished with identical cells. It has recently been proven by Weaire
and Phelan (57) that at least one structure of even lower energy exists, if this
restriction is lifted. The Weaire–Phelan structure (Fig. 13), whose surface
area is about 0.34% lower than that of Kelvin (i.e., S1/S0¼ 1.0936), has
repeating units that contain 8 equal-volume cells: 2 identical pentagonal
dodecahedra and 6 identical tetrakaidecahedra that each have 12 pentagonal
and 2 hexagonal faces. The pressure in the dodecahedra is slightly higher than
that in the tetrakaidecahedra. Perhaps surprisingly, neither the Kelvin nor
the Weaire–Phelan structure is rarely, if ever, encountered in actual
monodisperse foams (3). The reason for this may lie in small deviations
frommonodispersity or, more likely, in the disturbing effects of the container
walls, as alluded to already in connection with 2D foams. Alternatively, as the
continuous phase is removed from between the initially spherical drops in fcc
packing, slight irregularities in this drainage process may force the system to
get trapped in a less-ordered structure that may be at a local surface
area minimum but is separated from the lower-energy Kelvin and Weaire–
Phelan structures by a significant barrier [cf. the difficulty one encounters
in trying to build a 15-bubble cluster that has a Kelvin polyhedron at its
center (58)].

Figure 13 Unit cell in Weaire–Phelan structure, containing 2 pentagonal

dodecahedra and 6 tetrakaidecahedra, each having 12 pentagonal and 2 hexagonal

faces. (Courtesy of A. M. Kraynik.)
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Kraynik and Reinelt (50) and Lacasse et al. (51) have accurately com-
puted the changes in surface area as a drop transforms from a sphere into a
regular dodecahedron (fcc) or a Kelvin cell (bcc) with increasing volume
fraction while maintaining zero contact angle. Expressed in terms of S/S0,
the results are shown in Fig. 14. The Kelvin structure is internally unstable
below �� 0.87. The results further indicate that the Kelvin cell becomes the
more stable structure above �� 0.93. Also indicated is the limiting law for
�! 1 for the dodecahedron. In that regime, linear Plateau borders of
constant cross section run along the edges of the polyhedron. Their volumes
and surface areas can be evaluated as a function of �, whereas the volumes
and surface areas of the tetrahedral borders become negligible. For the
rhombic dodecahedron (24), this leads to

S

S0
¼ 0:0686 1� 1:892 1� �1=2

� �� �3
þ1:0367 ð� ! 1Þ

Kraynik and Reinelt (50) also evaluated the all-important osmotic
pressure �(�), which, for 3D structures, is given by [cf. Eq. (16)]

� ¼ 	�2
S0

V1

dðS=S0Þ

d�
¼

3	�2

R

dðS=S0Þ

d�

Figure 14 Scaled surface areas as a function of volume fraction for the rhombic

dodecahedral (fcc) and Kelvin structures (bcc). (From data kindly provided by A. M.

Kraynik and D. A. Reinelt.)
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where R is the radius of the initially spherical drops, or

~�� �
�

	=R
¼ 3�2

dðS=S0Þ

d�
ð27Þ

For the dodecahedron, the appropriate limiting law for �! 1 is given
(24) by

~�� ¼
�

	=R
¼ 0:5842�1=3

1� 1:892ð1� �Þ1=2
� �2

ð1� �Þ1=2
ð�! 1Þ ð28Þ

Figure 15 shows ~��ð�Þ for the dodecahedron and Kelvin cell.
Detailed numerical calculations have been carried out by Bohlen et al.

(59) for the transition of monodisperse spheres in simple cubic packing
(�0¼ 0.5236) to cubes (�¼ 1), for both zero and finite contact angles.
Unfortunately, although the results are interesting, this kind of packing is
not realistic for foams and emulsions and will not be discussed further.

D. Polydisperse 3D Systems

This is, of course, the system of greatest interest from a practical point of
view. The detailed structure is exceedingly complex. As mentioned earlier,

Figure 15 Reduced osmotic pressure as a function of volume fraction for the

rhombic dodecahedral and Kelvin structures. (From data kindly provided by A. M.

Kraynik and D. A. Reinelt.)
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even the value of �0 is not precisely defined and is expected to depend
somewhat on the details of the size distribution. Nevertheless, there is
clear experimental evidence (23,24) that �0 is close to—or slightly smaller
than—0.7405 for ‘‘typical,’’ polydisperse, unimodal emulsions.

In the dry-foam limit, each polyhedral drop must satisfy Euler’s
formula; that is,

v� eþ f ¼ 2 ð29Þ

where v is the number of vertices, e is the number of edges, and f is the
number of faces. For an infinite number of space-filling polyhedra that are
subject to Plateau’s rules, a number of statistical relationships can be
derived from Eq. (29) (60–62). Perhaps the most interesting of these is

h f i ¼
12

6� hei
ð30Þ

where h f i is the average number of faces per cell and hei is the
average number of edges per face. Equation (30) is consistent with what
is expected for a monodisperse ‘‘Kelvin foam,’’ where h f i ¼ f¼ 14 and
eh i¼ (6� 4þ 8� 6)/14¼ 5.143, or a Weaire–Phelan structure, where h f i¼
(2� 12þ 6� 14)/8¼ 13.5 and eh i ¼ [2� 12� 5þ 6� (12� 5þ 2� 6)]/108¼
5.111. As mentioned earlier, Matzke (3) found that, in a real, supposedly
monodisperse foam, Kelvin’s polyhedra did not occur and that pentagonal
faces were predominant. He found that h f i ¼ 13.70 and eh i ¼ 5.124, which is,
again, consistent with Eq. (30). For a real polydisperse dry foam, Monnereau
and Vignes-Adler (63) found h f i¼ 13.39
 0.05 and eh i¼ 5.11, again in close
agreement with Eq. (30). These authors did not encounter any Kelvin cell (or
Weaire–Phelan structure) either.

For �0<�<1, the drops go through a complex transition from
spheres to pure polyhedra. In this most general system, the osmotic pressure
is given by

�ð�Þ ¼ 	�2
S0

V1

dðS=S0Þ

d�
¼

3	�2

R32

dðS=S0Þ

d�
ð31Þ

where R32 is the surface/volume or Sauter mean radius of the initially spheri-
cal drops:

R32 �

P
niR

3
iP

niR
2
i

¼
3V1

S0
ð32Þ
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Although R32 can be readily measured for any practical system, the complex
geometry does not allow the evaluation of S(�)/S0 and �(�) from first
principles. Instead, in the next section, we shall show how these and other
important functions can be derived from experiment.

V. UTILITY AND EXPERIMENTAL EVALUATION
OF THE OSMOTIC PRESSURE

We have repeatedly emphasized the importance and utility of the osmotic
pressure � of foams and concentrated emulsions. Once known as a function
of �, it may be used to quantitatively link and predict a large number
of other important properties. Some of these are listed in this section. In
addition, these considerations lead to a convenient method for evaluating
�(�) experimentally (see Sec. V.D).

A. Motion of Continuous Phase Between Different Systems
in Contact

Let two concentrated dispersions with the same type of continuous phase
[e.g., an aqueous foam and an oil-in-water emulsion, or two different o/w
emulsions] be brought into contact, either directly or via a freely movable
semipermeable membrane. If the osmotic pressures are unequal (e.g., as a
result of differences in the volume fractions, mean drop size, interfacial
tension, or combinations thereof), it is obvious that the (common) contin-
uous phase will flow from the dispersion with the lower osmotic pressure
into that with the higher osmotic pressure until the two pressures are equal-
ized. The final volumes and volume fractions of the two dispersions may be
predicted in a straightforward manner, once ~��ð�Þ is known. It is important
to point out that equality of the (mean) capillary pressures does not neces-
sarily rule out flow nor does their inequality imply it.

B. Vapor Pressures of Continuous and Dispersed Phases

It can be shown (29) that the vapor pressure, pcv, of the continuous phase is
reduced to below that of the bulk continuous phase, ð pcvÞ0, according to

pcv ¼ ð pcvÞ0 exp
�� �VV2

<T

� �

ð33Þ

where �VV2 is the partial molar volume of the solvent, < is the gas constant,
and T is the absolute temperature.
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Similarly, the vapor pressure of the dispersed phase, pd , in a concen-
trated emulsion can be related to that of the bulk dispersed phase, ð pdv Þ0 by

pdv � ð pdv Þ0 exp
2	

R32

�VV1

<T

S

S0

� �

ð34Þ

where 	 is the interfacial tension, R32 is the Sauter mean drop radius, �VV1 is
the molar volume of the dispersed liquid, and S/S0 is the relative increase in
surface area at the volume fraction �. For �<�0, where S/S0¼ 1, we
recover a variant of Kelvin’s equation; for �>�0, the increased vapor
pressure is augmented further by the appearance of the factor S/S0 in the
exponent, with S/S0 being related to �(�) through Eq. (31).

C. Gradient in / in Gravitational Field

So far, we have assumed that gravity is absent or negligible, so that the
volume fraction is uniform throughout the system. In gravity, however, a
sufficiently tall column will develop a significant gradient in � (24). Even if
each individual drop is small enough to be essentially unaffected by the field
(i.e., when the Bond number is very small), the combined buoyant force
of the underlying drops causes increasing drop deformation (and volume
fraction) in the higher regions (Fig. 16). At the boundary between the
dispersion and the bulk continuous phase, where z¼ 0, we have �¼�0,
and the drops are purely spherical. At higher z, they increasingly deform
until, as z ! 1, they acquire a purely polyhedral shape and �! 1. It is

Figure 16 Transition from spherical to polyhedral drops in vertical column. [From

Ref. 40. Copyright (1986) American Chemical Society.]
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clear that, at any level, the combined buoyant force of all underlying drops
per unit area must equal the local osmotic pressure:

�ð�Þ ¼ ��g

Z z

0

� dz ð35Þ

or

~��ð�Þ ¼
��gR32

	

Z z

0

�ðzÞ dz ¼

Z ~zz

0

�ð ~zzÞ d ~zz ð36Þ

where �� is the density difference between the phases, g is the acceleration
due to gravity, ~��ð�Þ is the reduced osmotic pressure

~��ð�Þ ¼
�ð�Þ

	=R32
ð37Þ

and ~zz is the reduced height

~zz �
R32z

a2c
ð38Þ

where ac¼ [	/(��g)]1/2 is the capillary length.
In all of the above, it is assumed that there is no gravitational segrega-

tion by drop size, that is, the drop size distribution does not vary with height.
Thus, once ~��ð�Þ is known, �ð ~zzÞ can be evaluated from Eq. (36) in the

form

~zzð�Þ ¼

Z ~��

0

d ~��ð�Þ

�
¼

Z �

�0

1

�

d ~��ð�Þ

d�

 !

d� ð39Þ

As mentioned earlier, the only system for which ~��ð�Þ is known exactly
is the monodisperse 2D system [cf. Eq. (16)]. When Eq. (39) is applied to this
case, we find

~zzð�Þ ¼
1

ð�0�Þ
1=2

1þ
1� �0
1� �

� �1=2

ð2�� 1Þ

" #

� 2 ð40Þ

where �0¼ 0.9069. This result has been obtained also by Pacetti (64). The
volume fraction profile is shown in Fig. 17.
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D. Experimental Determination of ~&&ð/Þ for Real Systems

From the above, it is clear that ~��ð�Þ may be evaluated experimentally from
Eq. (36) by determining the volume fraction as a function of height in an
equilibrated (i.e., completely drained) dispersion column. This has been
done very carefully for a typical, well-characterized polydisperse emulsion
of paraffin oil in water (24). The emulsion had a Sauter mean drop radius of
R32¼ 44.7 mm, an interfacial tension of 7.33mN/m, and a density difference
of 0.144 g/cm3. The experimental profile �ð ~zzÞ is given in Fig. 18 and may be
compared with that in Fig. 17 for the monodisperse 2D system. It could be
numerically fitted to the following equations, covering three different
ranges of �:

‘‘Low’’-volume fraction (0.715<�<0.90 or 0< ~zz<0.5):

~zz ¼ 0:237
�� 0:715

1� �

� �

ð41Þ

or

� ¼
~zzþ 0:169

~zzþ 0:237
ð42Þ

This leads to

~��ð ~zzÞ ¼ ~zz� 0:068 ln ð ~zzþ 0:237Þ � 0:098 ð43Þ

which, upon substitution for ~zz according to Eq. (41), leads to ~��ð�Þ.
Equation (41) shows that �¼�0¼ 0.715 at ~zz¼ 0. This is one of our

Figure 17 Volume fraction versus reduced height for perfectly ordered 2D case.
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reasons for concluding that typical polydisperse systems pack slightly
less tightly than ideally close-packed monodisperse systems, where
�0¼ 0.7405.
Intermediate-volume fraction (0.90<�<0.99 or 0.5< ~zz<4.0):

� ¼ 1:037 1� ð117:6 ~zzþ 4:0Þ�1=2
� �

ð44Þ

and

~�� ¼
0:00819�2

ð1� 0:9639�Þ2
ð45Þ

High-volume fraction (0.99<�<1 or ~zz>4.0):

~zz � ~�� ¼ 0:5842
1� 1:892ð1� �Þ1=2
� �2

ð1� �Þ1=2
ð46Þ

which is the appropriate limiting solution for the polyhedral system.

Equations (42), (43), (45), and (46) describe the dependence of ~�� on �,
as shown in Fig. 19. It may be compared with that for the monodisperse 2D

Figure 18 Experimental profile of volume fraction versus reduced height for typical

polydisperse emulsion. [From Ref. 24. Copyright (1987) American Chemical Society.]
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and 3D systems in Figs. 5 and 15, respectively. Close examination shows
that the experimental osmotic pressure is consistently lower than those for
the idealized structures in Fig. 15.

Even though these relationships were derived for one particular
emulsion, its size distribution was ‘‘typical,’’ so that we believe that they
can be applied with reasonable confidence in most practical situations.
Nevertheless, more work remains to be done to elucidate the effect of the
details of the size distribution. There is a particular need for the equivalent
expressions for the monodisperse system, which would serve as a benchmark.
Bibette’s (65) novel way of preparing emulsions of low polydispersity
(
10% in radius) has opened up experimentation along these lines.
Unfortunately, the technique appears to be capable only of generating
emulsions of extremely small drop size (R<1 mm), which complicates
matters in several ways. First, estimates of the effective volume fractions
[cf. Eq. (1)] become questionable, unless detailed quantitative information is
available on the equilibrium film thickness as a function of the apparent
volume fraction (or capillary pressure). This is usually not the case, poten-
tially leading to significant errors. Second, droplets of such small size are
Brownian, which may lead to an entropic contribution to the osmotic

Figure 19 Reduced osmotic pressure as a function of volume fraction for typical

polydisperse emulsion. [From Ref. 24. Copyright (1987) American Chemical Society.]
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pressure, in addition to the energetic contribution considered so far. These
and other factors may be responsible for some of the differences between the
above results and those of Mason et al. (66), who measured �(�) for an
oil-in-water ‘‘Bibette emulsion’’ of R¼ 0.48 mm. To cover the whole range of
�, they used three different ways to generate the osmotic pressure: gravita-
tional compaction, centrifugation, and dialysis of the emulsion against the
continuous phase containing various levels of dextran, a polymer to which
the dialysis membrane is impermeable. The osmotic pressure was found to
rise at an estimated effective � of (�0)e� 0.60 (rather than 0.715). This is
close to 0.64, the value for random close packing of uniform spheres. Up to
�e¼ 0.80, the data could be fitted well to

~�� / �2ð�� 0:60Þ ð�<0:80Þ:

For �>0.80, the results of the two studies appear to be quite consis-
tent, in spite of the disparity in the degree of polydispersity of the emulsions
employed. The apparent discrepancy at the lower volume fractions may be
entirely due to the large difference in mean drop size, for the reasons cited
earlier.

E. Gravitational Syneresis or Creaming

In the absence of gravity (or with fluids of matched densities), a perfectly
stable emulsion or foam with �> �0 will remain uniform and not ‘‘phase
separate’’, (i.e., it will not exude a bottom layer of continuous phase). In a
gravitational (or centrifugal) field, such syneresis may occur, however, as a
result of compaction in the upper region (assuming that we are dealing with
a foam or o/w emulsion; the continuous phase would separate at the top in
w/o emulsions). In a consumer product, such behavior could be detrimental,
as it might suggest instability, breakdown, and limited shelf life, even though
simple shaking would restore (temporary) uniformity. With the knowledge
contained in the previous subsection, it is possible to predict exactly when
such syneresis will in fact occur (67). For a container of constant cross
section, the parameters of importance are the overall volume fraction, ���,
and the reduced height of the sample, ~HH, defined by

~HH �
HR32

a2c
¼ HR32��

g

	
ð47Þ

where H is the actual height of the sample. It is clear that, for any ���, there
must be a critical reduced sample height, ~HHcr, above which syneresis will
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occur and below which it will not. From a material balance and Eq. (36), it
is readily shown that ~HHcr must obey the condition

~HHcr ¼
~��ð ~HHcrÞ

�
ð48Þ

Figure 20 shows how the resulting ~HH– ��� diagram is bisected by ~HHcrð ���Þ.
Reference 67 provides procedures for determining the height of the sepa-
rated layer of continuous phase, if any, as well as the precise variation of �
with height in the sample. The method may be extended to containers with
varying cross section (67). The following general conclusions may be drawn:
(a) Everything else being equal, syneresis is less likely the higher the overall
concentration of the dispersed phase, ���; of course, when ���< �0, syneresis
will always occur; (b) For given ��� (> �0), the tendency toward syneresis is
less pronounced the smaller ~HH {i.e., for small drop size, high interfacial
tension, small density difference, and small sample height [cf. Eq. (47)]};
(c) For a foam or typical o/w emulsion, the tendency toward syneresis is
reduced if the container is shaped with its widest part at the bottom. The
reverse is true for typical w/o emulsions.

F. Increase in Specific Surface Area with /

We have seen that the osmotic pressure is directly linked to the scaled specific
surface area, S/S0, as � increases from �0 through Eq. (31). For the mono-
disperse 2D system, S/S0 is given by Eq. (13) and is plotted in Fig. 3.

Figure 20 Critical sample height for occurrence of syneresis as a function of

overall volume fraction.
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To the extent that the real emulsion studied in Ref. 24 is representative
of typical polydisperse 3D systems, one can derive S/S0 from the expressions
for ~��ð�Þ in Section V.D. The results (24) are as follows:

For 0.715<�<0.90,

S

S0
¼ 1þ

1

3

0:084

�
�
0:068

�
lnð1� �Þ � 0:237

� �

ð49Þ

For 0.90<�<0.99,

S

S0
¼

0:00283

1� 0:9639�
þ 0:989 ð50Þ

For 0.99<�<1,

S

S0
¼ 1:014þ 0:0686½1� 1:892ð1� �Þ1=2�3 ð51Þ

The combined results are shown in Fig. 21, where it is seen that the transi-
tion from spheres to completely developed polyhedra is accompanied by an
increase in surface area of 8.3%. As mentioned earlier, for the monodisperse
case, one predicts an increase in surface area of 9.7% on the basis of

Figure 21 Scaled specific surface area as a function of volume fraction for typical

polydisperse emulsion. [From Ref. 24. Copyright (1987) American Chemical

Society.]
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Kelvin’s polyhedron as the ultimate drop shape, or 9.4% for the Weaire–
Phelan structure. Polydispersity appears to give rise to an even somewhat
smaller overall change in surface area. Recent computer simulations of
various monodisperse and polydisperse structures by Kraynik et al. (68)
confirm this result almost quantitatively.

G. Surface Area in Films Versus Total Surface Area

At any given volume fraction �, a fraction Sf/S of the total surface area
forms part of the films separating the droplets, and the remainder is still
‘‘free’’ in the Plateau borders (Sf/S¼ 0 at �¼�0; Sf/S¼ 1 at �! 1). This
parameter may play an important role in problems relating to the stability
of, and mass transfer in, such systems. We have shown (29) that

Sf

S
¼

S1=S0

S=S0

f ð�Þ

�2=3
�

1:083

�2=3
f ð�Þ

S=S0
ð52Þ

where S/S0 is given by Fig. 21 and f(�) is the fraction of a confining wall
that is ‘‘contacted’’ by the flattened parts of the drops pushing against it,
under the assumption that the wall is perfectly wetted by the continuous
phase. This fraction, which varies from f¼ 0 at �0 to f¼ 1 at �¼ 1, can be
measured experimentally (69) and was found empirically to be given by

f ð�Þ ¼ 1�
3:20

�=ð1� �Þ þ 7:70ð Þ
1=2

ð53Þ

for �0< �<0.975. (By solving for � at f¼ 0, we again obtain evidence that
�0� 0.72 for real, polydisperse systems.) For �>0.975, we expect that f (�)
is given, to a good approximation (40), by

f ð�Þ ¼ 1� 1:892ð1� �Þ1=2
� �2

ð54Þ

Combining Eqs. (53) and (54) with Eq. (52) leads to the approximate
dependence of Sf/S on � as shown in Fig. 22.

These are just some of the examples of where and how the osmotic
pressure, or its related properties, can be used to define the overall
equilibrium behavior of these complex fluids, even though their detailed
microscopic structure may not be fully known. Other examples are
presented in Section VI, where we describe the only properties that are
unique to foams as a result of the compressibility of their dispersed phase.
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VI. FOAMS: INTERNAL PRESSURE, EQUATION OF STATE,
AND COMPRESSIBILITY

Up to this point, we have emphasized the common structural and other
properties of concentrated emulsions and foams. However, because of
their gaseous dispersed phase, foams are compressible and, just as gases
themselves, can be characterized by an equation of state that relates their
volume, external pressure, and temperature.

A. Dry-Foam Limit (/¼ 1)

For a polydisperse dry foam, one can define an average internal pressure �ppi
that is given by

�ppi ¼

P
piviP
vi

¼

P
pivi

V
ð55Þ

Figure 22 Fraction of total surface area contained in films as a function of volume

fraction for typical polydisperse emulsion. Solid curve at right is limiting solution for

fcc; the dashed curve connects it to the lower experimental region. [From Ref. 29.

Copyright (1988) American Chemical Society.]
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where pi and vi are the pressure and volume of bubble i, respectively, and V is
the total foam volume. Derjaguin (70) has shown that

�ppi ¼ Pþ
2	S1

3V
ð� ¼ 1Þ ð56Þ

where P is the external pressure and S1/V is the specific surface area of the
foam. Assuming ideality of the gas phase, this leads to the equation of state

Pþ
2	S1

3V

� �

V ¼ n<T ð� ¼ 1Þ ð57Þ

where n is the number of moles of gas in the foam. The same results were
later obtained by Ross (71).

Morrison and Ross (72) have indicated that although Eqs. (56) and
(57) are undoubtedly correct for monodisperse foams, a rigorous proof of
their validity for polydisperse systems was lacking. Such proof has since been
provided by Hollinger (73), Crowley (74), and Crowley and Hall (75).

Derjaguin (70) further showed that the compression modulus K is
given by

K � �V
dP

dV
¼

Pþ 2 �ppi

3
¼ Pþ

4	

9

S1

V
ð� ¼ 1Þ ð58Þ

which compares to K¼P for a simple ideal gas.
The specific surface area in Eqs. (56)–(58) may be replaced by

S1

V
¼

S1

S0

S0

V
¼

3

R32

S1

S0
ð59Þ

where, as earlier, R32 is the Sauter mean bubble radius and S1/S0� 1.083 is
the increase in surface area associated with the transition from spherical to
polyhedral bubbles at equal volume.

B. Foams with Finite Liquid Content (/ < 1)

We have shown (29) that, for this general case, Eqs. (56)–(58) are to be
modified as follows:

�ppi ¼ Pþ
1� �

�
�þ

2	S

3V1
ð60Þ

Pþ
1� �

�
�þ

2	S

3V1

� �

�V ¼ n<T ð61Þ

K ¼
1

�
Pþ

1� �

3�
�þ ð1� �Þ2

d�

d�
þ
4	

9

S

V1

� �

ð62Þ
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where� is the osmotic pressure, V1 is the volume of the dispersed gas phase,
and V is the total foam volume (V1¼�V). For �¼ 1, Eqs. (56)–(58) are
recovered.

Equations (60)–(62) may be written in the form

�ppi � P ¼
	

R32

1� �

�
~��þ 2

S

S0

� �

ð63Þ

Pþ
	

R32

1� �

�
~��þ 2

S

S0

� �� �

�V ¼ n<T ð64Þ

K ¼
1

�
Pþ

	

R32

1� �

3�
~��þ ð1� �Þ2

d ~��

d�
þ
4

3

S

S0

 !" #

ð65Þ

where ~�� is the reduced osmotic pressure. The terms within the parentheses
depend on � only and can be evaluated from the above-presented data.
It may be shown (29) that the ‘‘osmotic’’ terms, although significant,
provide only a rather small correction (<6%) to the dominant ‘‘Derjaguin
terms’’ in S/S0. Of perhaps trivial but greater significance is the correction
for the volume fraction outside the brackets of Eqs (61), (62), (64), and (65).

VII. MECHANICAL AND RHEOLOGICAL PROPERTIES

It has long been realized that the crowding of deformable drops and bubbles
in concentrated emulsions and foams gives rise to interesting mechanical
and rheological properties, not shown by the separate constituent fluid
phases. When subjected quasistatically to a small stress, these systems
respond as purely elastic solids, characterized by a static elastic modulus,
G. Under dynamic conditions, the modulus has a real, elastic component
(the storage modulus, G0) and a complex, viscous component (the loss
modulus, G00). Once a critical or yield stress is exceeded, the systems flow
and behave as viscoelastic fluids, whose effective viscosity decreases from
infinity (at the yield stress) with increasing shear rate. Thus, in rheological
terms, they are plastic fluids with viscoelastic solid behavior below the yield
stress and viscoelastic fluid behavior above the yield stress.

A number of early experimental studies have provided qualitative
evidence for some or all of these behavioral aspects (e.g., Refs. 4 and
76–82), but the techniques employed were usually crude and/or the systems
were poorly characterized, if at all. This makes it impossible to use these
early experimental data to draw conclusions as to the quantitative relation-
ships between the rheological properties, on the one hand, and important
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system variables, such as volume fraction, interfacial tension, mean drop
size (and size distribution), fluid viscosities, shear rate, and so forth, on the
other hand. In the last decade or so, interest in this area has intensified and
much progress has been and is being made along several fronts: theoretical
modeling, computer simulation, and careful experimentation. For other
recent, although by now somewhat outdated, reviews, see Refs. 83–86.

A. Theoretical Modeling and Computer Simulation

In view of the exceedingly complex structure of 3D systems—even when
monodisperse—initial efforts were confined almost exclusively to their 2D
analogs. Although unrealistic in some ways, these models provide important
kinematic insights and their behavior may be extrapolated, with caution
and limitations, to real systems. At first, for the sake of mathematical tract-
ability, the complexity was reduced even further by considering perfectly
ordered, monodisperse 2D systems. Gradually, the degree of complexity has
been increased by allowing disorder. It is only very recently that some
intrepid investigators have begun to tackle the 3D problem in earnest.

1. Elastic and Yield Properties: Shear Modulus and Yield Stress

Two-Dimensional Systems. For the perfectly ordered case, the
unstrained equilibrium structure has been discussed earlier. The (cylindrical)
drops are arranged on a perfectly ordered hexagonal lattice, decorated at its
vertices with Plateau borders, whose wall curvatures are determined by the
drop size and volume fraction according to Eq. (11). The system can be
thought to be confined between two parallel plates, with rows of drops being
forced to align with the plates. As one of the plates is now moved within its
own plane to induce shear, all drops respond by being deformed identically.
In the process, the surface area increases. With the assumption of constant
interfacial tension, this results in a force (stress) versus deformation (strain)
behavior that has been analyzed in detail, using straightforward geometrical
arguments, by Princen (87) for any value of � � �0. The simplest dry-foam
case of �¼ 1 has been considered independently by Prud’homme (88).

The sequence of events in the dry-foam limit is illustrated in Fig. 23 for
a single unit cell (i.e., the parallelogram formed by the centers of four
adjacent drops). As the cell is strained at constant volume, the angle between
the films must remain at 120�, which causes the central film to shorten until
its length shrinks to zero. At that point, four films meet in a line. The
resulting instability resolves itself by a rapid so-called T1 rearrangement
or ‘‘neighbor switching.’’ In the process, new film is generated from the
center to restore the original, unstrained configuration. A different, perhaps
clearer, view of the system as it moves through such a cycle is shown in
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Fig. 24. At any stage, the stress per unit cell is given by the horizontal
component of the tension of the originally vertical films; that is,

F ¼ 2	 cos ð66Þ

where  is the angle between these films and the horizontal shear direction.
The resulting stress–strain curve per unit cell is given by curve 8 in Fig. 25,
where ~FF is the dimensionless stress per unit cell:

~FF ¼
F

2	
¼ cos ð67Þ

Figure 23 Shear deformation of unit cell of perfectly ordered 2D system in

dry-foam limit (�¼ 1); the transition from (c) to (d) is rapid and is often referred to

as a T1 rearrangement or neighbor switching. (From Ref. 87, with permission from

Academic Press.)
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Figure 24 Alternative view of shear strain cycle. (From Ref. 87, with permission

from Academic Press.)

Figure 25 Shear stress per unit cell versus shear strain for perfectly ordered 2D

system at different volume fractions. (From Ref. 87, with permission from Academic

Press.)
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Khan and Armstrong (45,89,90), using a slightly different analysis, arrived
at the following simple analytical result for curve 8:

~FF ¼
�

ð�2 þ 4Þ1=2
ð68Þ

where g is the imposed strain, which varies from zero to 2/
ffiffiffi
3

p
at the point of

instability. The cycle then repeats itself.
When �<1, the situation is considerably more complicated (Fig. 26).

As long as the two Plateau borders within the unit cell remain separated
(Mode I), the stress per unit cell is unaffected. However, beyond a given
strain, which depends on �, the Plateau borders merge to form a single,
four-sided border. In this Mode II regime, the films no longer meet at 120�,
and the stress–strain curve deviates from that for the dry-foam limit.

Figure 26 Increasing strain for systems with 0.9069<�<1. Between (a) and

(b), the system is in Mode I; between (b) and (c), the system is in Mode II. (From

Ref. 87, with permission from Academic Press.)
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It passes through a (lower) maximum and ultimately reverses sign, either
continuously or via a T1 rearrangement (87). The resulting curves are
collected in Fig. 25. In each case, the maximum ~FFmax corresponds to the
static yield stress per unit cell. It is plotted in Fig. 27 as a function of �,
together with the corresponding yield strain. Realizing that there are 1/a

ffiffiffi
3

p

unit cells per unit of length in the shear direction and that a may be
expressed in terms of the more practical drop radius R and volume fraction
�, one finds for the stress(�)–strain(�) relationship

� ¼ 1:050
	

R
�1=2 ~FFð�,�Þ ð69Þ

whereas the yield stress, �0, is given by

�0 ¼ 1:050
	

R
�1=2 ~FFmaxð�Þ ð70Þ

Figure 27 Static yield stress per unit cell and yield strain as a function of volume

fraction for a perfectly ordered 2D system. (From Ref. 87, with permission from

Academic Press.)
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where ~FFmaxð�Þ may be read from Fig. 27. It is expected to start deviating
from zero when adjacent layers of close-packed drops or bubbles can freely
slide past each other (i.e., at �¼�/4¼ 0.7854).

The small-strain, static shear modulus, G, is defined as

G �
d�

d�

� �

�¼0

ð71Þ

and can be obtained from Eqs. (69) and (68):

G ¼ 1:050
	

R
�1=2

d ~FF

d�

 !

�¼0

¼ 0:525
	

R
�1=2 ð�>�0Þ ð72Þ

The model predicts zero shear modulus for �<�0.
Both the yield stress and the shear modulus scale with 	/R, but,

although the yield stress increases strongly with volume fraction, the shear
modulus is affected only very weakly through �1/2. In the dry limit of �¼ 1,
both reach identical limiting values of

�0 ¼ G ¼ 0:525
	

R
ð� ¼ 1Þ ð73Þ

The analysis may be extended to systems in which the film thickness, h,
or the contact angle, �, between the films and the Plateau border walls are
finite (87). The effect of a finite film thickness is to increase the effective
volume fraction [cf. Eq. (1)], which raises the yield stress and shear modulus
in a predictable fashion. The effect of a finite contact angle on the shear
modulus is to simply reduce it by a factor of cos �. The effect on the yield
stress is more complex. In most but not all cases, the yield stress is increased.
Furthermore, a finite contact angle can give rise to interesting new instabil-
ity modes and to hysteretic behavior. The reader is referred to Ref. 87 for
further details.

Subsequently, Khan and Armstrong (89,90) and Kraynik and Hansen
(91) considered the effect of the orientation of the unit cell, relative to the
shear direction, for the dry-foam case. They found that the shear modulus
is unaffected, but that the yield stress is sensitive to the orientation. In
addition, they considered planar extension as well as shear.

The sudden jump of the shear modulus from zero to a finite value at �0
and its subsequent weak sensitivity to � for �>�0 are rather peculiar and
appear to be associated with the perfect order of the model. The pure
cyclical character of the stress–strain curves is—by itself—a symptom of
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‘‘perfection pathology.’’ Real systems do not exhibit these particular fea-
tures, because they are invariably disordered, which causes T1 rearrange-
ments to occur even at very small strains, as well as randomly throughout
the system, rather than simultaneously at all vertices.

The shear modulus of polydisperse hexagonal systems of the type
depicted in Fig. 8b, is still given by Eq. (72) when R is replaced by
Rav¼ ð

P
R2

i =nÞ
1=2, a characteristic drop radius that is based on the average

drop area (46). However, as expected, the ‘‘elastic limit’’ (i.e., the stress and
strain where the first T1 rearrangement occurs) is reduced relative to that of
the monodisperse case of the same volume fraction.

The elastic and yield properties of 2D systems with the most general
type of disorder (cf. Fig. 7) have been simulated by Hutzler et al. (92) for
both dry and wet systems. Indeed, as the number of polydisperse drops in
the simulation is increased, the jumps in stress associated with individual or
cooperative T1 rearrangements become less and less noticeable. Instead, the
stress increases smoothly with increasing strain until it reaches a plateau that
may be identified with the yield stress. The yield stress was found to increase
sharply with increasing volume fraction, very much as in the monodisperse
case. Furthermore, the shear modulus for the dry system (�¼ 1) was essen-
tially identical to that for the monodisperse case, as given by Eq. (73) with
Rav, as defined earlier, replacing R. Its dependence on � was very different
from that in Eq. (72), however. When expressed in our terms, their results
for 1>�>0.88 could be fitted to

G

	=Rav
¼ 0:51� 21ð1� �Þ2 ð74Þ

Assuming that this relationship continues to hold for �<0.88 (where their
simulations ran into difficulties because of the large number of T1 processes
the program had to deal with), the authors (92) concluded that G reaches
zero at �¼�0� 0.84. As mentioned earlier, this ‘‘rigidity-loss transition’’
can be identified as the random close packing of hard disks. The drop in
G with decreasing � could further be correlated with the average number of
sides of the Plateau borders, which gradually increased from three close to
�¼ 1 to about four at �¼ 0.84. Although these simulations involved a
rather small number of drops and leave some questions unanswered, they
do indicate a type of elastic behavior that—as we will see later—much more
closely reflects that of real systems. Clearly, disorder plays a critical role.

Three-Dimensional Systems. The first expression for the shear

modulus of random dry foams (and emulsions) was derived by Derjaguin
(93). It is based on the assumption that the foam is a collection of randomly
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oriented films of constant tension 2	 and negligible thickness and that each
film responds affinely to the applied shear strain, as would an imaginary
surface element in a continuum. Evaluating the contribution to the shear
stress of a film of given orientation and averaging over all orientations then
leads to

G ¼
4

15
	
S1

V
ð� � 1Þ ð75Þ

where S1/V is the surface area per unit volume. Because S1/V�

1.083S0/V¼ 3.25/R32, this may be written as

G �
13

15

	

R32
� 0:87

	

R32
ð� � 1Þ ð76Þ

Much later, Stamenović and Wilson (94) rediscovered Eq. (75), using similar
arguments but pointing out at the same time that it probably represents an
overestimate. Indeed, using 2D arguments, Princen and Kiss (95) concluded
that the affine motion of the individual films violates Plateau’s laws and
leads to an overestimate of G by a factor of 2, at least in 2D. (Kraynik, in a
private communication, pointed out an internal inconsistency in Ref. 95 and
concluded that G is overestimated by a factor of only 3/2). Furthermore,
Derjaguin’s model does not allow for T1 rearrangements; it does not predict
a yield stress nor does it have anything to say about the effect of � in ‘‘wet’’
systems. On the other hand, the model correctly predicts that G scales
with 	/R.

Stamenović (96) analyzed the deformation of an idealized single foam
vertex, where four Plateau borders meet and concluded that

G ¼
1

6
	
S1

V
� 0:54

	

R32
ð� � 1Þ ð77Þ

As pointed out by Reinelt and Kraynik (56), however, the idealized vertex
does not adequately represent an equilibrium structure. Similar reserva-
tions apply to the work of Budiansky and Kimmel (97), who considered
the behavior of an isolated foam cell in the form of a regular pentagonal
dodecahedron and obtained a shear modulus between the two above values.

Using Brakke’s Surface Evolver (49), Reinelt and co-workers
(56,68,98–102) have explored in detail the elastic response of monodisperse,
perfectly ordered structures, both ‘‘dry’’ and ‘‘wet,’’ to extensional and shear
strain. Structures considered included the rhombic dodecahedron, the regular
(‘‘planar’’) tetrakaidecahedron, the Kelvin cell, and the Weaire–Phelan
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structure. Some degree of disorder was introduced by considering bidisperse
Weaire–Phelan systems (103), in which the relative volumes of the dodeca-
hedra and tetrakaidecahedra were varied, as well as random, although
monodisperse, systems (68). As in the 2D case, the stress–strain behavior
depends on the cell orientation relative to the strain direction. Because of the
multitude of edges and faces of each cell, a variety of T1 transitions may
occur at increasing strain, leading to very complex behavior. Some of their
results for the shear moduli of dry systems (�¼ 1) are listed in Table 1.

The ordered structures are all anisotropic, have cubic symmetry,
and can be characterized by two shear moduli, G1 and G2. To simulate
orientational disorder, the authors introduced an ‘‘effective isotropic shear
modulus,’’ Gav ¼ ð2=5ÞG1 þ ð3=5ÞG2, which is obtained by averaging over all
orientations. The first three columns of Table 1 give the moduli in units of
	V�1/3, where V is the cell volume; the last column is given in units of 	/R,
where R¼ (3V/4�)1/3. The orientation-averaged results are surprisingly close
to the 2D prediction of G/	R�1

¼ 0.525 [cf. Eq. (73)], Stamenović’s predic-
tion of G/	R�1

¼ 0.54 [cf. Eq. (77)], and the extrapolated experimental result
of Princen and Kiss (95) for polydisperse emulsions, which indicated that
G/	R�1

32 ¼ 0.509 (see Sect. VII.B.3). The small influence of polydispersity is
also suggested by the finding that Gav varies less than 0.5% when the
volume ratio of the two types of cells in bidisperse Weaire–Phelan struc-
tures is varied between 0.039 and 2.392 (103).

Simulations of this type can pinpoint an ‘‘elastic limit’’ where the first
(or subsequent) T1 transition(s) take(s) place. It depends extremely strongly
on orientation, as does the ‘‘dynamic yield stress’’ (i.e., the stress integrated
over a complete strain cycle). The relevance to the yield stress of real
disordered systems is therefore quite limited (100). As in 2D simulations,
simulations on more highly disordered systems will undoubtedly bring
increased insight.

Simulations on ‘‘wet’’ rhombic dodecahedra and Kelvin cells have
been carried out by Kraynik and colleagues (68,102). The effective isotropic
shear moduli were found to depend slightly on the volume fraction but
did not show the linear dependence on ���0 found experimentally for

Table 1 Shear Moduli of Dry Systems

G1/	V
�1/3 G2/	V

�1/3 Gav/	V
�1/3 Gav/	R

�1

Regular tetrakaidecahedron 0.5525 0.9696 0.8028 0.4980

Kelvin 0.5706 0.9646 0.8070 0.5006

Weaire–Phelan 0.8902 0.8538 0.8684 0.5387

Random (monodisperse) 0.78
 0.08 0.48
 0.05
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disordered systems (95). Again, simulations on highly disordered wet
systems should improve our understanding.

Buzza and Cates (104) also addressed the question of whether disorder
or the increased dimensionality from two to three dimensions is responsible
for the observed experimental behavior of the shear modulus. In particular,
they explored the lack of the sudden jump in G from zero to a finite value at
�¼�0 that is predicted by the perfectly ordered 2D model. We have seen
earlier that disorder appears to remove that abrupt jump in two dimensions
(92). For drops on a simple cubic lattice, Buzza and Cates analyzed the
drop deformation in uniaxial strain close to �¼�0, first using the model
of ‘‘truncated spheres.’’ (For reasons given earlier, we believe this to be a very
poor model.) They showed that this model did not eliminate the discontinu-
ous jump in G. An exact model, based on a theory by Morse and Witten
(105) for weakly deformed drops, led to G / 1= lnð�� �0Þ, which gets rid of
the discontinuity but still shows an unrealistically sharp rise at �¼�0 and
is qualitatively very different from the experimentally observed linear
dependence of G on �¼�0. Similar conclusions were reached by Lacasse
and co-workers (51,106). A simulation of a disordered 3D model (106)
indicated that the droplet coordination number increased from 6 at �0 to
10 at �¼ 0.84, qualitatively similar to what is seen in disordered 2D systems
(92). Combined with a suitable (anharmonic) interdroplet force potential,
the results of the simulation were in close agreement with experimental shear
modulus and osmotic pressure data. Therefore, it appears again that
disorder is responsible for many of the features of real systems.

2. Shear Viscosity

Compared to the quasistatic elastic and yield behaviors of concentrated
emulsions and foams, the rate-dependent viscous properties are even more
complex and relatively unexplored. Formally, the shear stress, �, may be
expressed as a function of the shear rate, _��, as

�ð _��Þ ¼ �0 þ �sð _��Þ ð78Þ

where �0 is the (elastic) yield stress and �sð _��Þ is the contribution from any
rate-dependent dissipative processes; or, in terms of the effective shear
viscosity, me,

me �
�ð _��Þ

_��
¼
�0
_��
þ
�sð _��Þ

_��
ð79Þ

The first term is, to a large extent, responsible for the shear-thinning behavior
of these systems. As is clear from the previous discussion, �0 is determined
primarily by 	, R and �, whereas the size distribution may play a secondary
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role. The dynamic stress, �s, is expected to depend on these and other
variables (e.g., the shear rate, the viscosities of the continuous and dispersed
phases, and surface-rheological parameters). So far, the predictive quality
of theoretical and modeling efforts has been very restricted because of the
complexity of the problem.

Buzza et al. (107) have presented a qualitative discussion of the various
dissipative mechanisms that may be involved in the small-strain linear
response to oscillatory shear. These include viscous flow in the films,
Plateau borders, and dispersed-phase droplets (in the case of emulsions),
the intrinsic viscosity of the surfactant monolayers, and diffusion resistance.
Marangoni-type and ‘‘marginal regeneration’’ mechanisms were considered
for surfactant transport. They predict that the zero-shear viscosity is usually
dominated by the intrinsic dilatational viscosity of the surfactant mono-
layers. As in most other studies, the discussion is limited to small-strain
oscillations, and the rapid events associated with T1 processes in steady
shear are not considered, even though these may be extremely important.

It is now generally recognized that surfactants are indeed crucial, not
only in conferring (meta)stability to the emulsion or foam but also in con-
trolling the rate-dependent rheology of the film surfaces and that of the
system as a whole. Several early, spatially periodic 2D models neglected
this aspect and made other simplifying assumptions. Khan and Armstrong
(45,89,90) and Kraynik and Hansen (108) assumed that all of the continuous
phase resides in the films (i.e., there were no Plateau borders) and that there is
no exchange of fluid between the films. The film surfaces were assumed to be
completely mobile (no surfactant!). When such a system is strained globally,
the uniform films respond with simple planar extension (or compression) at
constant volume. This mechanism predicts significant structural changes but
leads to viscous terms in Eqs. (78) and (79) that are insignificant compared
with the elastic terms up to extremely high shear rates that are unlikely to be
encountered in practice. Experimentally, one finds a much more significant
contribution (see Sect. VII.B.3).

A more complete 2D analysis of simple shear is that of Li et al. (109).
It solves the detailed hydrodynamics in the drops, films, and Plateau borders
for the case of equal viscosities of the continuous and dispersed phases.
Again, large structural changes are predicted. However, surfactants (and
surface tension gradients) are assumed to be absent, which severely limits
the practical implications of the analysis. An interesting conclusion is that,
under certain conditions, shear flow can stabilize concentrated emulsions,
even in the total absence of surfactants.

An approach that is almost diametrically opposed to the earlier
models of Khan and Armstrong, and Kraynik and Hansen, was advanced
by Schwartz and Princen (110). In this model, the films are negligibly thin,
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so that all of the continuous phase is contained in the Plateau borders and
the surfactant turns the film surfaces immobile as a result of surface tension
gradients. Hydrodynamic interaction between the films and the Plateau
borders is considered to be crucial. This model, believed to be more realistic
for common surfactant-stabilized emulsions and foams, draws on the work
of Mysels et al. (111) on the dynamics of a planar, vertical soap film being
pulled out of, or pushed into, a bulk solution via an intervening Plateau
border. An important result of their analysis is commonly referred to as
Frankel’s law, which relates the film thickness, 2h1, to the pulling velocity,
U, and may be written in the form

h1

r
¼ 0:643ð3Ca�Þ2=3 ð80Þ

where Ca*¼ mU/	 (<<1) is the film-level capillary number, m and 	 are the
viscosity and surface tension of the liquid (the ‘‘continuous phase’’), and r is
the radius of curvature of the Plateau border where it meets the film and is
given by capillary hydrostatics, r¼ (	/2�g)1/2, where � is the density of the
liquid and g is the gravitational acceleration.

Frankel’s law has its close analogs in a number of related problems
(112–114) and has been verified experimentally (115,116) in the regime
where the drawn-out film thickness, 2h1, is sufficiently large for disjoining-
pressure effects to be negligible. Below some critical speed, the thickness of
the drawn-out film equals the finite equilibrium thickness, 2heq, which is
set by a balance of the disjoining pressure, �d (h), and the capillary pressure,
	/r, associated with the Plateau border. Thus, Frankel’s law and the follow-
ing analysis apply only as long as 1>>Ca*2/3>> heq/r. It is expected to
break down as the capillary number approaches zero. Disjoining pressure
effects may, in principle, be included (e.g., Ref. 117) but at the expense of
simplicity and generality of the model.

The interesting hydrodynamics and the associated viscous energy
dissipation are confined to a transition region between the emerging, rigidly
moving film and the macroscopic Plateau border. The lubrication version of
the Stokes equation may be used in this region, as the relative slope of the
interfaces remains small there.

It is reasonable to assume that the same basic process operates in
moving emulsions and foams. Lucassen (118) has pointed out that for
such systems to be stable to deformations such as shear, the dilatational
modulus of the thin films must bemuch greater than that of the surfaces in the
Plateau border. However, this is equivalent to the assumption of inextens-
ible film surfaces that underlies Frankel’s law. Therefore, it may well be
that, by implication, emulsions and foams that are stable to shear (and we
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are interested in such systems only) have the appropriate surface rheology
for Frankel’s law to apply. Of course, in emulsions and foams, each Plateau
border of radius r (set by drop size and volume fraction) is now shared by
three films. At any given moment, one or two of the films will be drawn out
of the border while the other(s) is (are) pushed into it, at respective quasi-
steady velocities U(t) that are dictated by the macroscopic motion of the
system (Fig. 28). Using a perfectly ordered 2D system, Schwartz and Princen
(110) considered a periodic uniaxial, extensional strain motion of small
frequency and amplitude, so that inertial effects are negligible and compli-
cations due to the merger of adjacent Plateau borders and associated rapid
T1 processes are avoided. They proceeded by calculating the instantaneous
rate of energy dissipation in the transition region of each of the three films
associated with a Plateau border and integrated the results over a complete
cycle. When the effective strain rate is related to the frequency of the
imposed motion, the result can be expressed as an effective viscosity that
is given by*

me ¼ 5:3mCa�1=3
ð81Þ

where the macroscopic capillary number Ca� ma _��/	, a is the length of the
hexagon that circumscribes a drop or bubble, and m is the viscosity of the
continuous phase. Because of the small amplitude of the imposed motion,

Figure 28 Film being pulled out of a Plateau border with velocity U(t); all viscous

dissipation occurs in the transition region (II). (From Ref. 110, with permission from

Academic Press.)

*In the original article (110), the numerical coefficient was given as 6.7. This and a few other

minor numerical errors were pointed out by Reinelt and Kraynik (119, and private

communication).
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the result does not depend on the volume fraction. It was further argued that
in the case of emulsions, the effect of the dispersed-phase viscosity, md, is
relatively insignificant. Reinelt and Kraynik (120) later estimated that this is
a good approximation as long as

md
m
<< Ca�1=3

ð82Þ

Apart from a change in the numerical coefficient, Eq. (81) is expected to
apply also to a periodic, small-amplitude shearingmotion.However, in steady
shear, rapid film motions associated with the T1 processes, whose effect has
so far not been analyzed, periodically interrupt the above process. Further, as
the strain at the instability depends on the volume fraction (Fig. 27), the
viscous term may become � dependent. Provided that the effect of the T1
jumps may be neglected or the associated viscous contribution also scales
with mCa�1/3, this model would then predict for the shear viscosity,

me ¼
�0
_��
þ Cð�ÞmCa�1=3

¼
�0
_��
þ C0ð�Þ

m2=3	1=3

R1=3
_���1=3 ð83Þ

or, for the shear stress,

� ¼ �0 þ Cð�Þ
	

a
Ca2=3 ¼ �0 þ C0ð�Þ

m2=3	1=3

R1=3
_��2=3 ð84Þ

where C(�) and C0(�) are of order unity and the yield stress �0 is given by
Eq. (70). Equations (83) and (84) describe a particular type of ‘‘Herschel–
Bulkley’’ behavior, characterized in general by � ¼ �0 þ K _��n and me ¼
�0= _�� þ K _��n�1. The special case of n¼ 1 is referred to as ‘‘Bingham plastic’’
behavior. Occasionally, foams and concentrated emulsions are claimed to
behave as Bingham fluids. As we shall see, this is not so. (In fact, it is
extremely unlikely that any fluid, when examined carefully, can be described
as such.)

Reinelt and Kraynik (119) improved on the above model by including
structural changes that result from the fact that the film tensions deviate
from the equilibrium value of 2	 as they are being pulled out of or pushed
into the Plateau border. These changes are of order (Ca*)2/3, as already
pointed out by Mysels et al. (111). As the values and signs of Ca* at any
instant are different for the three films emanating from a Plateau border,
their tensions are generally unequal and the angles between them deviate
from 120�, and the Plateau border radius, r, is also affected. However, these
refinements do not alter the qualitative conclusion of the original model, as
embodied in Eq. (81), for either planar-extensional or shear deformations.
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Applying this approach to uniform dilatation of a foam, Reinelt and
Kraynik (119) also derived an expression for the dilatational viscosity,
which again scales with mCa�1/3. Using a different surface-rheological
description, Edwards and co-workers (121–123) arrived at alternative
expressions for the dilatational viscosity of wet and dry foams.

In yet another extension, Reinelt and Kraynik (120) applied the
approach to steady shearing and planar-extensional flow of perfectly ordered
2D systems for 0.9069<�<0.9466. This is the range of ‘‘very wet’’
systems, for which the shear stress varies continuously with strain over a
complete strain cycle (cf. Fig. 25), so that rapid film events associated with
T1 processes are avoided. They also investigated the effect of orientation,
and structural effects due to changes in film tension were again included.
As earlier, the effective viscosity was found to be proportional to mCa�1/3.
Interestingly, the model indicates that the effective viscosity increases with
increasing volume fraction, which parallels practical experience.

Okuzuno and Kawasaki (124) simulated the shear rheology of dry,
random 2D systems, using their ‘‘vertex model’’ in which the films are
uncurved and do not generally meet at 120� angles. Although Plateau’s
condition is therefore violated, the model offers the advantage of being
computationally more efficient than other, more realistic models. By solving
the ‘‘equations of motion’’ for all the vertices, while taking account of T1
rearrangements and using the energy-dissipation approach of Schwartz and
Princen (110), these authors tentatively concluded that the system behaves
like a Bingham plastic fluid. However, because the number of simulations
was quite limited, they did not rule out Herschel–Bulkley behavior with
n 6¼ 1 (see above discussion). In a later study, the same investigators (125)
observed violent flows like that of an avalanche in their simulations in the
large strain regime at small shear rate. Similar avalanchelike flows are
observed in simulations by Jiang et al. (126).

This review is not exhaustive by any means. Other studies have been
and are being published regularly, as the topic continues to enjoy consider-
able interest. It appears, however, that theoretical analyses and computer
simulations can only go so far. There is a need for careful experimental work
in order to establish the actual behavior of real systems. As has been the case
in the past, further progress will be optimal when the two approaches go
hand in hand.

B. Experimental Approaches and Results

The rheological parameters of primary scientific and practical concern
are the static and dynamic shear modulus, the yield stress, and the shear-
rate-dependent viscosity. The aim is to understand and predict how these
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depend on the system parameters. In order to accomplish this with any hope
of success, there are two areas that need to be emphasized. First, the systems
studied must be characterized as accurately as possible in terms of the volume
fraction of the dispersed phase, the mean drop size and drop size distribu-
tion, the interfacial tension, and the two bulk-phase viscosities. Second, the
rheological evaluation must be carried out as reliably as possible.

1. System Characterization

The bulk phases are generally Newtonian and their viscosities can be
measured with great accuracy with any standard method available.

The nominal volume fraction of the dispersed phase can be obtained
very accurately from the relative volumes (or weights) of the phases used
in the preparation of a highly concentrated emulsion (69). A series of
emulsions, differing only in volume fraction, may be conveniently prepared
by dilution of a mother emulsion with varying known amounts of the
continuous phase (69). Alternatively, if the phases differ greatly in volatility,
the volume fraction may be obtained, albeit destructively, from the weight
loss associated with evaporation of the more volatile phase, usually water
(127). Another destructive method is to destroy the emulsion by high-speed
centrifugation in a precision glass tube, followed by accurate measurement
of the relative heights of the separated liquid columns (24). To arrive at
the effective volume fraction, the nominal volume fraction may need to be
corrected for a finite film thickness according to Eq. (1). Because all
rheological parameters depend more or less strongly on the volume fraction,
it is important that the vertical gradient in volume fraction due to gravity be
kept to a minimum, if reliable rheological evaluations are to be expected.
The gradient in volume fraction may be predicted quantitatively (67).
Because the drop size and the density difference between the phases are
generally much larger in foams than in emulsions, the gradient in � is
usually much more pronounced in the former than in the latter. The
rheologies of both types of system being governed by identical laws, it is
preferable—for this and many other reasons (see next paragraph)—to use
emulsions, rather than foams, to learn about foam rheology.

The mean drop size and drop size distribution can be measured to
within a few percent accuracy with a number of techniques, such as the
‘‘Coulter Counter’’ (69,95,128) and dynamic light scattering. The Coulter
Counter is eminently suitable for oil-in-water emulsions but has a lower
practical limit of about 1 mm. Various light-scattering techniques are equally
suitable for oil-in-water and water-in-oil (w/o) emulsions and afford a larger
dynamic range. In either case, the concentrated emulsion must be diluted
with the continuous phase to a level where coincidence counting or multiple
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scattering, respectively, is avoided. One popular method that should perhaps
be avoided is optical microscopy, which is not only tedious but also
relatively inaccurate when applied to polydisperse systems because of
depth-of-focus limitations and wall effects. At any rate, a practical lower
limit for accurate, quantitative optical microscopy is well in excess of 1 mm.
Whatever method is used, it is desirable that complete size distributions be
reported. At the very least, when only a mean drop size is reported, the type
of mean should be specified. Finally, it appears that size determinations
are much easier to obtain in emulsions than in foams. Moreover, although
it is easy to prepare emulsions whose drop size distribution changes
imperceptibly over a period of months, the bubble size distribution in
foams changes very rapidly as a result of Ostwald ripening. It is, therefore,
almost impossible to have accurate knowledge of the bubble size distribu-
tion at the moment a rheological measurement is being made. These are yet
additional reasons for using emulsions in order to investigate foams.

The interfacial tension may be determined to within about 1%
accuracy with the spinning drop method (129,130). It is an absolute and
static method that requires only small samples and, in contrast to most other
methods, does not depend on the wettability of a probe, such as a ring or
Wilhelmy plate. The stabilizing surfactant is commonly used at concentra-
tions in the bulk continuous phase that are far above the critical micelle
concentration (cmc). This ensures that the concentration remains above the
cmc after adsorption onto the vastly extended interface has taken place,
which is clearly needed to maintain emulsion stability. It is tempting,
therefore, to assume that the interfacial tension in the finished emulsion
equals that between the unemulsified bulk phases and that it remains con-
stant when a ‘‘mother emulsion’’ is diluted with continuous phase in order
to create a series of emulsions in which only � is varied (69). This may be a
reasonable assumption when a pure surfactant is used, but there is evidence
that this may not be so when impure commercial surfactants are employed
(95,128).

2. Rheological Evaluation

Most studies have used standard rheological techniques, such as rotational
viscometers of various types and geometries, such as concentric-cylinder,
cone-and-plate, and parallel-plate rheometers, each of which may be opera-
ted in various modes [constant stress, constant strain, steady shear, or
dynamic (i.e., oscillatory) shear]. The relative advantages and/or limitations
of these and other techniques may be found in any standard textbook on
practical rheometry (e.g., Ref. 131). When applied to highly concentrated
emulsions and foams—or suspensions in general, for that matter—these
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techniques are fraught with many difficulties and pitfalls that are often
overlooked, leading to results of questionable validity. Some of these
difficulties are the following.

Wall-induced Instability. Princen (69) has reported that otherwise
very stable oil-in-water emulsions showed extremely erratic behavior when
sheared in a commercial concentric-cylinder viscometer with stainless-steel
parts. The problem could be traced to the ‘‘coalescence’’ of the dispersed oil
droplets with the steel walls and the formation of a thick oil layer.
Apparently, the thin films of continuous phase separating the walls from
the first layer of individual droplets were unstable and ruptured. Coating all
relevant parts with a thin film of silica, which assured adequate film stability
and complete wetting of the steel by the continuous phase, solved the
problem (69). Later, an even more satisfactory solution consisted of replac-
ing the steel inner and outer cylinders with glass parts, combined with other
improvements in design (95,128,132). Some of the glass cylinders were
highly polished; others were roughened and equipped with vertical grooves
to eliminate or reduce wall slip (see below). Wall-induced instability may or
may not be a problem, depending on the wall material, the emulsion (w/o or
o/w), and surfactant type.

End and Edge Effects. In the analysis of raw data obtained with
any type of rotational viscometer, it is assumed that the flow field is
known and simple. For example, in the conventional concentric-cylinder
viscometer, it is assumed that the fluid moves in concentric cylindrical
layers that extend unchanged from the precise top to the precise bottom
of the inner cylinder. This is true only when the cylinders are infinitely long.
For cylinders of finite length, complications at the top are usually minor
and can often be neglected. In the lower region of the viscometer, however,
the flow is seriously disturbed. In addition, the bottom of the inner
cylinder may contribute a substantial fraction of the total measured
torque. This can lead to serious errors. Various suggestions have been
made to deal with the problem (131), but their practical value is question-
able. In addition to making other improvements, including the use of a
hollow inner cylinder, Princen and Kiss (95,128,132) effectively isolated
the bottom region by filling it with a layer of mercury. In that way, the
sample of interest is strictly confined to the space between the cylinders.
As long as its effective viscosity is much greater than that of mercury,
flow between the cylinders is undisturbed and the torque on the bottom
of the inner cylinder is negligible. The arrangement is shown schematically
in Fig. 29.

In the cone-and-plate viscometer, there are similar, although perhaps
somewhat less severe, problems associated with the outer edge (131).
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Wall Slip. Along with wall-induced instability, the occurrence of slip
between the sample and the viscometer walls is one of the most serious and
prevalent, although often neglected, problems one encounters in
assessing the rheology of dispersed systems, in general, and concentrated
emulsions in particular. Because concentrated emulsions have a yield stress,
wall slip—if present—can be readily demonstrated by painting a thin line of
dye on top of the sample in a wide-gap rotating-cylinder viscometer (69). As
long as the yield stress is not exceeded at the inner cylinder wall, the sample
is not sheared at all but is seen to move around in the gap as an elastically
strained solid! In this regime, shear is confined to the thin films of continu-
ous phase separating the wall from the adjacent droplets. For a sufficiently
smooth wall, it is possible to estimate the thickness of these films from the
measured wall stress and angular velocity (69).

It is obvious that neglect of wall slip may lead to meaningless conclu-
sions as to the system’s rheology. There are two different approaches to
dealing with this particular problem. First, one can try to eliminate slip
by roughening the viscometer surfaces. Princen and Kiss (95) successfully
used roughened and grooved glass cylinders to determine the static shear
modulus of concentrated emulsions. This worked well in the low-stress,
linear elastic regime, although, even here, some wall creep did occur
(which could be readily corrected for). However, massive wall slip was
noted to commence at shear stresses exceeding only about one-half of the
bulk yield stress. Thus, even though the roughness was commensurate with
the drop size and served the intended purpose, the arrangement would have
been inadequate for determining the yield stress and shear viscosity.
Therefore, the question remains how rough a surface must be to eliminate
slip up to the maximum shear stress considered. As an extreme case,
large radial vanes have been recommended, at least for yield stress

Figure 29 Modified concentric-cylinder viscometer with glass outer cylinder,

hollow glass inner cylinder, and pool of mercury to confine the sample to the gap and

thus to minimize the end effect.
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measurements (133). Although undoubtedly effective in preventing slip,
the vanes do lead to some uncertainty in the strain field.

Many published rheological studies declare that wall slip was checked
for and found to be absent. Unless solid evidence is provided, it behooves
the reader to approach such assertions with a healthy dose of skepticism.

A second approach is to permit slip and to correct for it. This usually
involves running the sample in two or more viscometer geometries (e.g., at
different gap widths) (131,134,135). Doubts have been expressed as to the
validity of this approach (136). At any rate, the procedure is rather tedious
and may not be very accurate. In an alternative method, Princen and Kiss
(128), using their improved design with polished glass cylinders, established
empirically that the torque versus angular velocity data for concentrated
emulsions may be linearized over most of the all-slip/no-flow regime. The
stress at which the data deviated from this linear behavior was identified as
the yield stress. Under the further, reasonable assumption that the linearized
slip behavior persists above the yield stress, where flow commences, the
angular velocity could be corrected for wall slip. Following standard
rheological procedures for yield-stress fluids in a wide-gap concentric-
cylinder viscometer, the dependence of the effective viscosity on shear rate
could then be determined.

It is clear from the above discussion that extreme care must be exer-
cised in the characterization and rheological evaluation of concentrated
emulsions. Few, if any, commercial viscometers are designed to give reliable
results for non-Newtonian fluids. Not only are modifications of the hard-
ware often called for, but also the software of automated instruments is
generally incapable of dealing with yield stress fluids, end effects, and wall
slip. For example, to correct for end effects, it will not do to use a calibration
or ‘‘instrument factor’’ for any but Newtonian fluids. Unfortunately, there
are no shortcuts in this field!

3. Experimental Results

For reasons indicated earlier, accurate physical characterization and
rheological evaluation of foams is extremely difficult. Indeed, although
there is much published material on foams that is qualitatively consistent
with what one would expect (and much that is not), we are not aware of any
such studies that can stand close quantitative scrutiny. Therefore, we shall
restrict ourselves to what has been learned from highly concentrated
emulsions, whose rheology is, in any case, expected to be identical to that
of foams in most respects. However, even in the emulsion area, the number
of carefully executed studies is severely limited. Admittedly not without
some prejudice, we shall concentrate on the systematic experimental work
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by two groups that were active at different times at the Corporate Research
Laboratory of Exxon Research and Engineering Co. [i.e., Princen and
Kiss (69,95,128) and Mason et al. (66,127,137,138)]. Both groups used oil-
in-water emulsions, but whereas Princen and Kiss used ‘‘typical’’ polydis-
perse emulsions with a mean radius of 5–10 mm, Mason and co-workers
opted for submicron, monodisperse ‘‘Bibette emulsions.’’ The term ‘‘mono-
disperse’’ is relative; there remained some polydispersity in drop radius of
about 10% and the emulsions were structurally disordered on a macroscopic
scale. The mean drop size in Princen’s emulsions was at least an order
of magnitude greater, which may account for some of the differences
in the results. Princen and Kiss used their customized concentric-cylinder
viscometer exclusively, either in steady shear with wall slip (to give the
yield stress and viscosity) or as a constant-strain device without wall slip
(to give the static shear modulus). Mason and co-workers were more
eclectic in choosing their techniques (concentric-cylinder and cone-and-
plate geometries in steady-shear and dynamic modes, as well as optical
techniques).

Shear Modulus. Princen and Kiss (95) used a series of well-charac-
terized, polydisperse oil-in-water emulsions of essentially identical Sauter
mean drop size, R32, and drop size distribution but varying dispersed-phase
volume fraction, �. Their modified Couette viscometer was purposely
equipped with ground and grooved glass cylinders to eliminate wall slip,*
and the emulsion was strained by turning the outer cylinder over a small,
precisely measured angle in the linear elastic regime. From the measured
stress at the inner cylinder, the static shear modulus, G, can be obtained in
a straightforward manner. The results in Fig. 30 show that over the range
considered (0.75<�<0.98), GR32/	�

1/3 varies linearly with �, and we can
write

G ¼ 1:77
	

R32
�1=3ð�� 0:712Þ ¼ 1:77

	

R32
�1=3ð�� �0Þ ð85Þ

where �0¼ 0.712 can be identified as the ‘‘rigidity-loss transition’’ for the
particular size distribution in these emulsions. This is surprisingly close to
that for ideal close packing of monodisperse spheres (�0¼ 0.7405) but
clearly in excess of that for random close packing of monodisperse spheres
(�0� 0.64). The exact value of �0 is expected to depend somewhat on the
details of the drop size distribution.

*This fact was unfortunately misrepresented in Ref. 66.
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In the ‘‘dry-foam’’ limit (�¼ 1), Eq. (85) reduces to

G�¼1 ¼ 0:509
	

R32
ð86Þ

As indicated earlier, this is in close agreement with various theoretical
estimates.

It may be argued which mean drop size is most appropriate for
describing the rheology of polydisperse systems. The selection of R32 is
based on limited evidence (69) and some other mean might ultimately
turn out to be preferable. (See, however, the postscript in Sect. IX.)

A simple extension of the perfectly ordered 2D model to a 3D model
would have suggested that G¼ 0 for �<�0¼ 0.74, with a sudden jump to an
almost constant, finite value of G/ 	�1/3/R for �>0.74 [cf. Eq. (72)].
As discussed earlier, it is now generally agreed that the absence of the
discontinuity and the essentially linear dependence on � above �0, found
experimentally, is due to structural disorder.

Figure 30 Scaled static shear modulus, GR32/	�
1/3, versus � for typical

polydisperse emulsions. Solid points are experimental data; the solid line is drawn

according to Eq. (85). (From Ref. 95, with permission from Academic Press.)
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Mason et al. (66) used small-amplitude, dynamic, oscillatory methods
(both in cone-and-plate and concentric-cylinder geometries) to probe the
viscoelastic properties [i.e., the storage (elastic) and loss (viscous) moduli,
G 0 and G 00, respectively] as a function of frequency, !. No mention is made
of wall-induced instability or end and edge effects. Having roughened the
viscometer walls, the authors claim that wall slip was nonexistent. At low
frequencies, G 0 reached a plateau that may be equated with the static shear
modulus, G. Plots of the scaled modulus, GR/	, versus the effective volume
fraction, �e, for four emulsions of different drop size essentially overlapped,
as expected. The drops were so small that significant corrections had to be
made to the nominal volume fractions to account for the finite (estimated)
film thickness, h, according to Eq. (1). In the dry-foam limit (�e¼ 1), the
scaled modulus approached a value of about 0.6, which is reasonably close
to Princen’s value of 0.51, but even for �<1, the data of the two groups are
remarkably similar. For example, for �e¼ 0.85 and 0.75, Mason et al. show
values for GR/	 of about 0.30 and 0.10, respectively, whereas Eq. (85) yields
0.23 and 0.061, respectively, for GR32/	. The differences are roughly
commensurate with the scatter in Mason’s data. At any rate, the difference
in polydispersity in the two sets of emulsions, or some experimental factor in
either study (end/edge effects?), may well explain these minor systematic
discrepancies.

Overall, Mason et al. found that their data can be described by

G � 1:7
	

R
� ð�� 0:64Þ ¼ 1:7

	

R
� ð�� �0Þ ð87Þ

where �0� 0.64 is the value for random close packing of monodisperse
spheres. Except for the difference in �0, this is very similar to Eq. (85).

Because of the limited sensitivity of their viscometer and the increased
potential effect of a gradient in � due to gravity, Princen et al. did not
explore the range of �<0.75 and reasonably assumed that the linear
behavior in Fig. 30 continues down to G¼ 0 at �¼ �0� 0.71. It is unclear
what significance, if any, must be attached to the apparent difference in �0
found in the two studies. Had it been possible to properly explore that
regime, Princen’s data might have shown some curvature for �<0.75 and
a similar smooth decline in G toward zero at �0� 0.64. More likely, the
difference is real and simply attributable to the differences in polydispersity
and associated random packing density. Another factor of potential
significance is the large difference in mean drop size. The drops in Mason’s
emulsions were submicron and, therefore, Brownian, which may contribute
an entropic (thermal) component to the modulus, as well as affect the
packing density.
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Direct support for Eq. (85) has been reported by, among others, Taylor
(139), Jager-Lézer et al. (140), Pal (141), and Coughlin et al. (142). Indirect
support has been obtained by Langenfeld et al. (143), who compared the
specific surface areas of a number of water-in-oil emulsions as determined
by two independent methods: (a) from the measured shear modulus—which
yields R32 from Eq. (85), and thus the specific surface area from 3�/R32—and
(b) from small-angle neutron scattering. The agreement was very satisfactory.

Yield Stress and Shear Viscosity. Using their modified concentric-
cylinder viscometer—equipped in this case with polished glass inner and
outer cylinders to allow unimpeded wall slip and a mercury pool to elimi-
nate the lower end effect—Princen and Kiss (128) determined the yield
stresses, �0, and effective viscosities, með _��Þ, of a series of well-characterized,
polydisperse oil-in-water emulsions. They empirically established that in all
cases, the all-slip/no-flow regime at slow steady shear was characterized by a
linear dependence of �1 on !/�1 (where �1 is the stress on the inner cylinder
and ! is the angular velocity of the outer cylinder). The stress at which the
data deviated from this linearity was identified as the yield stress. At higher
angular velocity, it was reasonably assumed that the same linear slip
behavior continued to operate, which permitted a straightforward slip
correction. Using conventional rheometric analyses, the stress and viscosity
were finally obtained as a function of shear rate.

The yield stress data could be expressed in the form

�0 ¼
	

R32
�1=3Yð�Þ ð88Þ

The experimental values of Y(�) are shown in Fig. 31 and can be empirically
fit to

Yð�Þ ¼ �0:080� 0:114 logð1� �Þ ð89Þ

Equation (89) should be used only within the range considered (i.e.,
0.83<�<0.98).

Data by Pal (141) support Eqs. (88) and (89), once the volume fraction
is corrected for a finite film thickness of 90 nm. Earlier data by Princen (69)
are consistently somewhat higher, probably because of significant end
effects in the original, unmodified viscometer.

Figures 32 and 33 show the fully corrected plots of shear stress versus
shear rate. Taking account of small differences in the measured interfacial
tensions, all data could be accurately represented by

� ¼ �0 þ 32:0ð�� 0:73Þ
	

R32
Ca1=2 ¼ �0 þ 32:0ð�� 0:73Þ

	m _��
R32

� �1=2

ð90Þ
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where m is the viscosity of the continuous phase and Ca is the capillary
number

Ca �
mR32 _��

	
ð91Þ

which did not exceed a value of 10�4 in any of the experiments.
For the effective viscosity, this leads to

me �
�

_��
¼
�0
_��
þ 32:0ð�� 0:73ÞmCa�1=2

¼
�0
_��
þ 32:0ð�� 0:73Þ

	m
R32 _��

� �1=2

ð92Þ

where �0 is given by Eqs. (88) and (89). Again, Eq. (92) should not be used
outside the range considered. It is interesting to point out that, as with so
many other properties, the viscous term tends to zero at �¼�0� 0.73.

It is encouraging that Eqs. (90) and (92) have the same form as
Eqs. (84) and (83), respectively, except for the exponent of the capillary
number. Several reasons for this difference have been advanced (128),
including the neglect of T1 rearrangements and disjoining pressure effects

Figure 31 Yield stress function Y(�)¼ �0R32/	�
1/3 versus � for typical polydisperse

emulsions. Solid points are experimental data; the curve is drawn according to

Eq. (89). (From Ref. 128, with permission from Academic Press.)
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in the original model. At any rate, considering that this is the first and only
systematic study of its kind, it is not yet clear how generally applicable Eqs.
(90) and (92) will turn out to be. Although some other qualitative experi-
mental support exists (144–146), there is a great need for additional, careful
studies to explore this area further. It may be significant in this context that
Liu et al. (147), using diffusing-wave spectroscopy [a novel light-scattering

Figure 32 Fully corrected plots of shear stress vs shear rate for series of typical

polydisperse emulsions. Arrows indicate the yield stress, �0. Emulsions EM2–7 have

the same drop size (R32¼ 10.1
 0.1 mm) but different volume fractions (�¼ 0.9706,

0.9615, 0.9474, 0.9231, 0.8889, and 0.8333, respectively). For EM8, R32¼ 5.73mm
and �¼ 0.9474. (From Ref. 128, with permission from Academic Press.)
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technique (148)] have found a contribution to the dynamic shear modulus
that is proportional to !1/2 (or Ca1/2) and increases roughly linearly with
volume fraction. Mason et al. (138) investigated the steady-shear behavior
of some monodisperse emulsions in the low-� range. They found that
the viscous stress contribution varies as _��2=3 for �¼ 0.58 and as _��1=2

for �¼ 0.63. For �>0.65, no clear power-law behavior was observed.
These authors claim that meaningful steady-shear measurements cannot
be made on emulsions of higher volume fractions because of the occurrence
of ‘‘inhomogeneous’’ strain rates. They presumably refer to the fact that, for
example, in a concentric-cylinder viscometer, only part of the emulsion
(i.e., within a given radius) is being sheared, whereas the outer part is not.
However, this situation, common to all yield-stress fluids, has been well
recognized and analyzed in the rheology literature and can be handled in
a quite straightforward manner (128).

Mason et al. (138) determined the yield stresses and yield strains of a
series of monodisperse emulsions, using either a cone-and-plate or double-
wall Couette geometry in oscillatory mode. Wall-induced coalescence and

Figure 33 Plots of log(�� �0) versus shear rate for same emulsions as in Fig. 32.

In all cases, the slope is very close to 1/2. (From Ref. 128, with permission from

Academic Press.)
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wall slip were claimed to be absent, but no mention is made of attempts to
reduce end or edge effects. Estimated film thicknesses were used to arrive at
the effective volume fractions. Their data for the yield stress could be fit to

�0 ¼ 0:51
	

R
ð�� 0:62Þ2 ð93Þ

and, for high �, are claimed to be ‘‘about an order of magnitude greater than
those measured for polydisperse emulsions,’’ as given by Eqs. (88) and (89).
This appears to be a misrepresentation. It is readily demonstrated that the
two sets of data are, in fact, quite comparable. For example, for �¼ 0.85
and �¼ 0.95, the values of the scaled yield stress, �0R/	, are 0.027 and 0.055
according to Eq. (93), and 0.013 and 0.067 according to Eq. (88). In fact, as
�! 1, Mason et al. predicted that the scaled yield stress reaches a limiting
value of 0.074, whereas extrapolation of Princen and Kiss’s data in Fig. 31
suggest a value that is well in excess of 0.1 and perhaps as high as 0.15
[the yield stress must remain finite in this limit and use of Eq. (89) is
unwarranted in this regime]. Mason et al. further assert that, at high �,
the yield strain of their monodisperse emulsions is also over an order of
magnitude greater than that of the polydisperse emulsions of Princen
and Kiss. This conclusion appears to be equally unfounded. In fact, the
rheological behavior of concentrated emulsions appears to be remarkably
unaffected by polydispersity.

We are not aware of any other systematic experimental studies that
meet the criteria set out above and there remains a great need for additional
careful work in this fascinating area.

VIII. ADDITIONAL AREAS OF INTEREST

Although this review covers many aspects of highly concentrated emulsions
and foams, it does not deal with a number of issues that are of considerable
interest. Foremost is the issue of emulsion and foam stability. A great deal of
information can be gleaned from recent books on foams and conventional
emulsions (17–22). Stability of highly concentrated emulsions is a rather more
delicate and specialized problem. The reader may consult a number of recent
publications that specifically deal with this subject (149–154).

One of the main driving forces for the recent upsurge in interest in
foams—and one that has been responsible for the entrance of so many
physicists into the field—has been their presumed usefulness in modeling
grain growth in metals. The coarsening of foam through gas diffusion
(a special form of Ostwald ripening) is thought to follow similar laws.
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This, among other things, inspired the first computer simulations of foams
by Weaire and co-workers and remains an active area of research (33).

As indicated, highly concentrated emulsions provide attractive starting
materials for the synthesis of novel materials (e.g., polymers andmembranes).
Ruckenstein has been particularly active in this area. In addition to the
references cited earlier (6,12–16), the reader may wish to consult a recent
comprehensive review of this area (155).

IX. POSTSCRIPT

Except for some minor editing, this review is identical to Chapter 11 in Ref.
156. Since then, further progress has been made. Two noteworthy examples
are the following.

In a recent tour de force, Kraynik, Reinelt, and van Swol (personal
communication, 2002) have carried out numerous computer simulations on
the shear modulus of truly disordered, 3D, dry-foam systems, in which the
degree of polydispersity was varied by over two orders of magnitude. Their
work comes to two important conclusions: (a) The surface volume or Sauter
mean radius R32 leads to a true numerical constant in Princen’s Eq. (86).
The choice of other means, such as the simple average radius, appears to
lead to a numerical factor that varies significantly with the degree of poly-
dispersity. Moreover, Kraynik et al. have developed strong theoretical
grounds for this conclusion. Although Princen’s initial choice of this parti-
cular mean was based mostly on intuition, and on very limited experimental
evidence, that choice now appears to have been justified. (b) With R32 as the
mean, Kraynik et al. found that the appropriate value of the numerical
factor in Eq. (86) is 0.511, in remarkable agreement with Princen’s experi-
mental value of 0.509! Because the error in both values is estimated to be a
few percent, it can be stated with considerable confidence that the constant
equals 0.51
 0.01. Unfortunately, the case of ‘‘wet’’ foams (�<1) appears
to be computationally too intensive to be similarly simulated in the foresee-
able future.

In a recent experimental study, Ponton et al. (157) measured the
shear moduli of a series of laboratory-prepared, polydisperse water-in-oil
emulsions of varying volume fraction. R32 was used as the characteristic
mean radius. The results were in very close agreement with Eq. (85) in that
the value of �0 was found to be 0.714, instead of Princen’s reported value of
0.712. Again, we see remarkable agreement! Unfortunately, the authors
failed to measure the interfacial tension in these emulsions, so that the
value of the numerical factor in Eq. (85) could not be ascertained.
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LIST OF SYMBOLS

Latin Symbols

a Side of hexagon circumscribing compressed 2D drops in perfect
order

ao Side of hexagon circumscribing uncompressed (circular) 2D drops
in perfect order

ac Capillary length¼ [	/(��g)]1/2

ci Mean curvature of surface between Plateau border and drop i
Cij Mean curvature of film between drops i and j
Ct Mean curvature of free surface of continuous phase at dispersion–

atmosphere boundary
Ca Macroscopic capillary number¼ ma _��=	 or mR32 _��=	
Ca* Film-level capillary number¼ mU/	
e Number of edges of a polyhedral drop
f Number of faces of a polyhedral drop
f(�) Fraction of surface of confining wall ‘‘in contact’’ with dispersed

drops
F Stress per unit cell
Fmax Maximum or yield stress per unit cell
g Acceleration due to gravity
G Static shear modulus
G0 Storage modulus
G00 Loss modulus
h Film thickness
heq Equilibrium film thickness
h1 Half the film thickness pulled out of Plateau border
H Sample height
Hcr Critical sample height for separation of continuous phase
K Compression modulus
pb Pressure in Plateau border
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pc Capillary pressure
pi Pressure in drop i
pcv Vapor pressure of continuous phase in dispersion
ð pcvÞ0 Vapor pressure of bulk continuous phase
pdv Vapor pressure of dispersed phase in dispersion
ð pdv Þ0 Vapor pressure of bulk dispersed phase
P External pressure
r Radius of Plateau border surfaces in 2D close-packed drops
R Radius of spherical or circular drop
Rav Average drop radius
R32 Surface volume or Sauter mean drop radius
< Gas constant
S Surface area of compressed drops
S0 Surface area of uncompressed (spherical or circular) drops
Sf Surface area contained in films
T Absolute temperature
U Film velocity
v Number of vertices of a polyhedral drop
V Dispersion volume
V1 Volume of the dispersed phase
V2 Volume of the continuous phase in the dispersion
�VV1, �VV2 Partial molar volume of phase 1 and 2, respectively
Y(�) Yield-stress function
z Vertical height in dispersion column

Greek Symbols

� Strain
_�� Rate of strain
�� Density difference
� Contact angle at film–Plateau border junction
m Viscosity of continuous phase
md Viscosity of dispersed phase
me Effective viscosity of dispersion
� Osmotic pressure
�d Disjoining pressure
� Density
	 Surface or interfacial tension
� Stress
�0 Yield stress
�s Stress due to dissipative processes
� Volume fraction of dispersed phase in emulsion or foam
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�0 Volume fraction of close-packed spherical drops
�e Effective volume fraction, after correction for finite film thickness
 Angle between films and shear direction
! Frequency or angular velocity
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6030 (1998).

144. F. van Dieren, in Theoretical and Applied Rheology. (P. Moldenaers and

R. Keunings, eds.), Proceedings of the XIth International Congress on Rheology

Elsevier, Amsterdam 1992, p. 690.

145. Y. Otsubo and R. K. Prud’homme, Soc. Rheol. (Japan) 20, 125 (1992).

146. Y. Otsubo and R. K. Prud’homme, Rheol. Acta 33, 303 (1994).

147. A. J. Liu, S. Ramaswamy, T. G. Mason, H. Gang, and D. A. Weitz, Phys. Rev.

Lett. 76, 3017 (1996).

148. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett.

60, 1134 (1988).

149. E. Ruckenstein, G. Ebert, and G. Platz, J. Colloid Interf. Sci. 133, 432 (1989).

150. H. H. Chen and E. Ruckenstein, J. Colloid Interf. Sci. 138, 473 (1990).

151. H. H. Chen and E. Ruckenstein, J. Colloid Interf. Sci. 145, 260 (1991).

152. M. P. Aronson, K. Ananthapadmanabhan, M. F. Petko, and D. J. Palatini,

Colloids Surfaces A 85, 199 (1994).

153. M. P. Aronson and M. F. Petko, J. Colloid Interface Sci. 159, 134 (1993).

154. J. Bibette, D. C. Morse, T. A. Witten and D. A. Weitz, Phys. Rev. Lett. 69,

2439 (1992).

155. E. Ruckenstein, Adv. Polym. Sci. 127, 1 (1997).

156. H. M. Princen, in Encyclopedic Handbook of Emulsion Technology. (J.
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