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Modelling the effectiveness of
pasteurisation
R. C. McKellar, Agriculture and Agri-Food Canada

6.1 Introduction: the role of predictive modelling

Processing of food products is designed in part to reduce or eliminate potentially
pathogenic microorganisms which may cause serious illness if ingested.
Consumers are now demanding fresher, less processed foods, and there is
move towards the development of minimally processed foods, which are
protected by a series of intervention steps (or ‘hurdles’) (Leistner and Gorris,
1995). It is essential that the efficacy of these hurdles be assessed for each fooc
product; however, the traditional approach of challenge testing is time
consuming and labour intensive. Mathematical modelling of microbial survival
and growth in foods provides a structured approach to ensure the safety of the
food supply.

Thermal inactivation of microorganisms in static systems is usually described
by the D- and zvalue concepts as discussed below, with temperature generally
held constant. The situation in canning operations or continuous flow systems
such as high-temperature short-time (HTST) pasteurisation, ultra high
temperature (UHT) and sterilisation processes is somewhat more complex,
due to non-isothermal conditions, thus an integrated lethal effect approach is
required (Kessler, 1986). In addition, the kinetics of inactivation in continuous
systems differ from those of batch systems, since in the former systems there are
additional factors such as pressure and shear forces which can influence
microbial survival (Mackey and Bratchell, 1989; Fairchétdal., 1994). As most
modern food processes are continuous, it is necessary to have additional
information on survival of microorganisms in these processes; however, few
studies have been published on laboratory or pilot plant continuous flow systems
(for review, see Fairchilét al, 1994). Development of databases and models
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for microbial behaviour in foods during processing and storage is an important
part of predictive modelling, thus we initiated studies to develop models for the

survival of selected food-borne microorganisms and milk enzymes during HTST
pasteurisation. This chapter will present some of the basic concepts of modelling
thermal inactivation. It will then describe how pasteurisation models have been
developed using a pilot plant pasteuriser, followed by a summary of the models
developed to date. Finally, a brief review of risk assessment will be presented,
with details relating to the incorporation of pasteurisation models into the risk

assessment framework.

6.2 The development of thermal models

The classical approach to thermal destruction of microorganisms assumes
simple first-order reaction kinetics under isothermal conditions:
ds

E__ks 6.1

where§ is the survival ratio Kl;/No, whereN; is the number of cells at time
and Ng the number of cells at time 0), arld is the rate constant. Thus the
number of surviving cells decreases exponentially:

§=et 6.2
and when expressed as lggives:
log § = —kt 6.3

wherek = k’/In 10. The well-knownD-value (time required for a 1-log reduc-
tion) is thus equal to k/ wherek is the slope (Fig. 6.1). ThB-values can also
be expressed as:

t
D-value= ————— 6.4
log Ny — log N
When log D-values are plotted against the corresponding temperatures, the
reciprocal of the slope is equal to thevalue, which is the increase in
temperature required for a 1-log decreas®iwalue (Fig. 6.1 inset). The rate
constant can also be related to the temperature by the Arrhenius equation:

k = Nog &/RT 6.5

wherekE, is the activation energyR is the universal gas constant, aids the
temperature in K.

The food processing industry has enjoyed an enviable record of safety, thus
the concept of exponential death of microorganisms has persisted, and is nov
considered accepted dogma. In spite of this, non-linear survival curves were
reported for some bacteria almost 100 years ago (Meatal., 1971). The
theoretical basis for assuming logarithmic behaviour for bacteria is based on the
assumption that bacterial populations are homogeneous with respect to therma



106 Dairy processing

5 34
2 4
4 >
3
11 z=1/slope
3 —
n 0 T T 1
é" 50 60 70
_ T(°C)
2 D = 1/slope
1 -
0 T T T 1
0 10 20 30 40

Time (min)
Fig. 6.1 Definition of the D- and z-values describing thermal inactivation kinetics.

tolerance, and that inactivation is due to a single critical site per cell (Moals
1971). Both of these assumptions have been questioned, and thus concerns hav
been raised regarding the validity of extrapolation of linear inactivation curves
(Campanella and Peleg, 2001; Cerf, 1977). In general, there are two classes of
non-linear curves: those with a ‘shoulder’ or lag prior to inactivation, and those
which exhibit tailing. These two phenomena may be present together, or with
other observed kinetics such as biphasic inactivation. A wide variety of complex
inactivation kinetics have been reported, and several of these are shown in Fig.
6.2, which include shoulder (a), biphasic (b), sigmoidal (c), and concave (d).
Stringeret al. (2000) have assigned the possible explanations for non-linear
kinetics into two classes: those due to artifacts and limitations in experimental
procedure, and those due to normal features of the inactivation process. The first
class encompasses such limitations as

« Variability in heating procedure

» Use of mixed cultures or populations
e Clumping

» Protective effect of dead cells

* Method of enumeration

» Poor statistical design.

The second class includes such situations as

» Possible multiple hit mechanisms
« Natural distribution of heat sensitivity
» Heat adaptation.
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Fig. 6.2 Examples of non-linear thermal inactivation curves: (a) shoulder; (b) biphasic
logistic; (c) sigmoidal; (d) concave.

These two classes roughly parallel two concepts reviewed by Cerf (1977) to
explain tailing in bacterial survival curves. The first of these (the ‘mechanistic’
approach) also makes the assumption of homogeneity of cell resistance anc
proposes that thermal destruction follows a process analogous to a chemica
reaction. In this approach, deviations from linearity are attributed mainly to
artifacts; however, tailing is also related to the mechanism of inactivation or
resistance. In the second (the ‘vitalistic’ approach) it is assumed that the cells
possess a normal heterogeneity of heat resistance, thus survival curves should t
sigmoidal or concave upward (Cerf, 1977).
Inactivation curves which deviate from simple exponential often have a lag or
shoulder region prior to the exponential phase. This shape of inactivation curve
is probably the one most commonly experienced by researchers. A simple linealr
model to account for this behaviour was developed by Whiting (1993):

logNp

when 0< t <t

logN; = IogNo<%)(ttL) whent >t

6.6

wheret, is the lag phase prior to inactivation. The Fermi equation, which is the
‘mirror image’ of the common logistic growth function, is also used for death
curves which exhibit a shoulder (Pruitt and Kamau, 1993):
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whereb is the maximum specific death rate (Fig. 6.2a). When one wishes to
include a secondary, more heat-resistant population, the resulting biphasic
logistic function is (Whiting, 1993):

F(l+e™b) (1-F)(1+ePb)
1+ eh(t-t) + 1 4 eha(t-t)

whereb; is the maximum specific death rate for the primary populationkarid

the maximum specific death rate for the secondary population. Traditi@nal
values may be calculated as h8r each population. Lag phases are not always
present, though this can be accounted for by setting the valtietofzero. An
example of the output of this function is given in Fig. 6.2(b). Sigmoidal
inactivation curves (Fig. 6.2(c)) can also be modelled using the asymmetric
Gompertz function (Lintoret al., 1995):

logs = Ce®™ —ce® 6.9

where A, B and C are coefficients. Another of the more common shapes of
survival curves is the concave curve, which has no lag, and a single, tailing
population (Fig. 6.2(d)). This function is best represented by the power law:

p

t
logS = ) 6.10

wherep is the power. A concave curve is produced whea 1.

One recent development in the modelling of bacterial survival is the use of
distributions. This is based on the assumption that lethal events are probabilistic
rather than deterministic, and that individual cells vary in their apparent thermal
stability. The Weibull distribution is used in engineering to model time to
failure, so it is appropriate for modelling bacterial inactivation. The distribution
of survival times would then follow the probability density function (PDF) for
the Weibull (solid line in Fig. 6.3):

b1
poF— (l) e W) 6.11
a \&x

6.7

logS = log { 6.8

wherea and 5 are parameters relating to the scale and shape of the distribution,
respectively (vanBoekel, 2002). The survival curve is then the cumulative
distribution function (CDF) (dotted line in Fig. 6.3):

CDF = /)’ 6.12
It can be easily seen that the CDF of the Weibull distribution is essentially a
reparameterisation of the power law function (equation 6.10).

As mentioned earlier, non-isothermal conditions predominate in continuous
food processes. Bigelow’s (1921) model has been the non-isothermal standard
model for the low-acid canned food industry for many decades. In this approach,
the processing tim€ is determined by integrating the exposure time at various
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Fig. 6.3 Examples of the probability distribution function (solid line) and the
cumulative distribution function (broken line) for a Weibull distribution.

temperatured (t) to time at a reference temperatufges (Nuneset al., 1993):
F= / 10TO-Tren)/Z it 6.13

This model is considered to be an approximation of the Arrhenius model which
is valid over a wide range (4-160°C) of temperatures (Nwted.,, 1993):

pE— L / e ERIAT)-(A/To)] 6.14
to Jo
where
PE = integrated lethal effect, or pasteurisation effect
E. = energy of activation (J mof)
R=8.314 (J mol* K™
T = temperature (K)
To = reference temperature (345K)
t = time (s)
to = reference time (155).

The reference temperature (345K or 72°C) and time (15s) correspond to the
International Dairy Federation standard for pasteurisation (Kessler, 1986).

It is often necessary for milk processors to demonstrate that the process they
wish to use is effective in delivering the required lethal effect for the product
and microorganism of concern. The integrated lethal effect is a useful concept,
as it allows two or more processes which use different time/temperature
combinations to be compared for efficacy against food-borne pathogens;
however, there are few data available relating microbial survival to processing
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conditions. This is of particular concern in the case of pasteurisation of milk,
where the only accepted test for proper pasteurisation is the alkaline
phosphatase (AP) test (Staal, 1986; International Dairy Federation, 1991).
The relationship between AP inactivation and survival of food-borne pathogens
is largely unknown, as is the response of AP to processing under alternative
time/temperature combinations. In addition, data are lacking on the influence of
continuous thermal processing on other milk enzymes which may be useful in
monitoring thermal process above or below that required for pasteurisation
(Griffiths, 1986; Andrewset al, 1987; Zehetneret al, 1996). These
considerations prompted the initiation of work to develop mathematical models
describing the survival of food-borne pathogens and selected milk enzymes
during HTST pasteurisation.

6.3 Key steps in model development

6.3.1 Strains and culture conditions

Bacterial strains used in the various studies were maintained in glycerol at
—20°C and propagated on Tryptic Soy Broth containing 0.6% (w/v) Yeast

Extract (TSBYE). Strains were transferred twice into TSBYE at 30°C for 24 h,

then inoculated into 20 litres of TSBYE at 30°C for 24 h. The cultures were

concentrated to approximately 800 ml using a Pellicon filtration system with an
HVMPOO0O0C5 0.45:m filter and stored overnight at 4°C.

6.3.2 Pasteuriser design

The pasteuriser (Fig. 6.4) was designed to heat milk at a rate of 363"Kgdm

2°C to temperatures as high as 80°C, and cool back to 4.5°C with 90%
regeneration. Pressure on the milk leaving the regeneration section was booste
by means of a positive displacement pump to obtain a mean pressure differential
of 41.4 kPa over the raw or feed side of the regeneration unit. The temperature of
the milk in the pasteuriser was controlled using a Yokogawa YS170 process
variable air-activated controller with three proportional settings in degrees
Celsius.

6.3.3 Holding tubes

Holding tubes were constructed of 304 stainless steel with an internal diameter
of 2.2 cm. The length of the holding tubes varied from 0.62m (5.42 s) to as long
as 17.23m (63.93s) depending on the residence time desired: a summary of
holding times and lengths appears in Table 6.1.

Previous work of D'Aoustet al. (1987) estimated a Reynolds number of
10500 for milk at 72°C in a 16.2 s holding tube, which is well above the critical
minimum of 4000 required for turbulent flow. The minimum holding time was
determined using a conductivity meter with the salt testing procedure set forth
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Table 6.1 Holding times in APV-Crepaco Junior Paraflow Pasteufiser

Holding Measurel Standard Maximum Correctéd
tube length minimum deviation deviation holding time
(m) holding time (s)
(s)
0.62 2.49 0.02 0.06 5.42
2.78 9.97 0.03 0.14 12.90
4.33 14.80 0.04 0.16 17.73
8.71 31.09 0.14 0.38 34.02
17.23 61.00 0.07 0.25 63.93

2 Data are from McKellaget al. (1994b) reprinted with permission frodournal of Food Protection
Copyright held by the International Association for Food Protection, Des Moines, lowa, USA.
Authors McKellar and Modler are with Agriculture & Agri-Food Canada, Guelph, Ontario, Canada;
authors Couture, Hughes, Payers, Gleeson, and Ross are with Health Canada, Ottawa, Ontario
Canada.

b Determined using the salt conductivity test= 5).

¢ Obtained by adding 2.93 s to the minimum holding time to allow for feed and return port connectors
(calculated from the total volume of the connectors assuming 80% efficiency).

by the International Association of Milk, Food, and Environmental Sanitarians,
the Public Health Service and the Dairy Industry Committee (1992).

The minimum time, from the point of product entry into the regeneration
section until collection at the receiving tank (excluding holding tubes), was
estimated to be 57.8s. The component times were as follows: regeneration (raw
side) 5.00s; heating, 4.63s; regeneration (pasteurised side) to sampling valve
14.98 s; sampling valve to receiving tank 29.87s; timing pump 3.28s. Total
residence time was obtained by adding the sum of the above times (57.8 s) to the
‘corrected’ holding tube times, reported in Table 6.1. This time was useful for
determining when the product, for a particular heat treatment, had cleared the
pasteurisation system.

6.3.4 Temperature monitoring
Temperatures were monitored using thermocouples (TC) at the following points
(Fig. 6.4):

e TC 1 — end of regeneration (raw milk side)
e TC 2 — after positive pump and before seating
e TC 3 — end of heating
e TC 4 — end of holding tub
e TC 5 — end of holding tub
e TC 6 — end of regeneration (pasteuriser side).

approximately same location

Thermocouples were inserted at the geometric centre of the product stream with

the exterior stainless steel sheath being insulated with Imcolok Thermo Cel.
The thermocouples were connected to a Digistrip Il recorder set to read at 2-s

intervals and to print out all measurements at 1-min intervals. Data were
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simultaneously collected with a portable computer using Telix V3.11
communications software. The thermocouples were calibrated at the Heat anc
Thermometry Laboratory, Physics Division, National Research Council of
Canada, and were accurate withi.2°C when tested at 1°C intervals between

0 and 120°C. Prior to each run the thermocouples were also checked for errol
against ice-water.

6.3.5 Milk processing

Milk (3.5% milkfat) was obtained from the Greenbelt Farm of Agriculture
Canada one day prior to experimentation. Approximately 1200-1600 litres of
Holstein milk were pumped from the delivery truck to a 1670-litre Cherry-
Burrell tank. When pathogen inactivation was being studied, milk was added
also to two Mueller tanks each containing 200 litres of whole milk which had
been previously heated to 80°C for 1 h, then cooled to 4°C. Each tank was ther
inoculated with 400 ml of culture concentrate (to approx® &fu mi~%), and

100 ml of the dye Fast Green FCF in distilled® (1% wi/v) was added as a
marker for inoculated milk.

Processing consisted of starting at the highest temperature for a given holding
tube, e.g. 80°C, and working down in 0.5-1.0°C increments until the lowest
temperature had been achieved. This normally spanned the range of 5°C for :
total of 6-10 samples per holding tube. Samples were taken only after the
desired temperature had been achieved and maintained for a minimum of 3 min
When milk containing pathogens was being processed, temperatures were se
using uninoculated milk from a bulk tank. Once a constant temperature had beer
established, flow was switched to the Mueller tank, and milk was sampled after
the green dye had become apparent in the outflow. The flow rate was monitored
using a mass flow meter, and was adjusted to 6.3kgminy manually
controlling the variable speed drives of the feed and booster pumps.

6.3.6 Program development

The program to calculate PE was written in VisualBasic. PE for each section of
the pasteuriser was determined by converting time at the indicated temperature
to the equivalent time at the reference temperature using the empirical kinetic
equation described by Kessler (equation 6.14). For each section of the
pasteuriser, the cumulative lethal effect was determined using the trapezoida
rule (Gibaldi and Perrier, 1975), and expressed as PE. Total PE was calculatec
by adding the individual PE values for each section.

The stages in the HTST modelling program are given in Fig. 6.5. When a
model was being derived, data from the TCs with the corresponding holding
tube and residual enzyme activity or viable counts were input for each sample.
Equipment calibration factors and residence times in the various parts of the
system were input from separate configuration files. Lethal temperature was
arbitrarily set at 60°C. A range fd/R was defined (usually 60000 to 80 000)
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and the lowest value was selected. For eBgR, a total PE was calculated for
each sample, and least-squares regression was performed between PE@nd log
% initial activity or initial cfu mI™*. In order to improve the fit, a power law
transformation (equation 6.10) of PE was incorporated in which a range %f PE
values were calculateat & 0.2 to 1.0). The method of least squares was used
(PE° vs. logyo % initial activity or initial cfu mI™*) to obtain the best value af

by minimising the error sum of squares (ESS) for each valuEfR. ESS is
defined as(1 — r?) x TSS, where TSS is the total sum of squares.

Values of E/R were incremented by 500, and the iteration was repeated as
described above. The iterations were terminated when the new ESS value dic
not improve on the previous value by more than 0.0001. The final model
consisted of the bedE/R, slope, intercept and powec)( Output for each
sample for further plotting was in the form= PE°, y = experimental data
(logyo % initial activity or initial cfu mi™™).

When an enzyme model was being validated, TC data®ginitial activity
values, and equipment configuration were input as described above (Fig. 6.5).
The optimumEy/R andc values were fixed, and PRvas calculated for each data
point. Intercept &) and slope If) values from the model were used to calculate
predicted activity using the following equation:

Predicted activity=a+ b - PE° 6.15

and output was in the form = predicted activityy = experimental activity.

6.4 Models for key enzymes and pathogens

In model development, the parameter estimates for at least three trials were
pooled for each milk enzyme or pathogen studied, and the mean paramete
values are given in Table 6.2. Due to the importance of pasteurisation in milk
processing, the first model was developed for AP (McKebaral, 1994b).

There was also a need to develop models for milk enzymes which might be usec
to confirm processing at temperatures above or below pasteurisation. Higher

Table 6.2 Model parameters for inactivation of various milk enzymes and food-borne
pathogens during HTST pasteurisation

Target Trials Intercept Slope PowerE4/R (x 1000)
Alkaline phosphatase 3 2.05 —4.05 0.50 66.5
~-Glutamyl transpeptidase 3 2.00 -0.281 0.75 66.5
Lactoperoxidase 3 2.12 —0.096 0.75 59.0
Catalase 3 1.94 —2.65 0.50 82.0
a-L-fucosidase 3 1.87 -17.6 1.00 39.8
Listeria innocua 5 1.86 —24.9 0.80 59.5
Listeria monocytogenes 3 1.68 —-18.4 0.80 48.5

Enterobacter sakazakii 3 2.31 —-24.4 0.65 59.5
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temperatures (at least 75°C) are appropriate for processing of more viscous dairy
products such as ice-cream mix. Lactoperoxidase (LP)-agtutamyl trans-
peptidase (TP) are two naturally occurring milk enzymes which are inactivated
at higher temperatures, and models were developed for these enzymes
(McKellar et al., 1996). Temperatures below pasteurisation of 63—-65°C (termed
sub-pasteurisation or thermisation) are used to extend the storage life of bulk
milk. Models have also been developed for catalase (CA) (Hirail,, 1996) and
a-L-fucosidase (FC) (McKellar and Piyasena, 2000) which are appropriate for
sub-pasteurisation temperatures. Parameter values for all enzyme models are
found in Table 6.2.

Validation experiments were done for AP, LP, TP and CA using data from
trials not used to develop the original models (procedure in Fig. 6.5). Since there
was generally close agreement among the three trials for all these enzymes, &
good relationship was obtained between predicted and experimental activities,
with r? values ranging from 0.735 to 0.993 (McKelletral,, 1994b, 1996; Hirvi
et al, 1996).

Survival models for several food-borne pathogens have also been derived.
Listeria innocua a non-pathogen, is often used as a substitute Lfor
monocytogenem situations (such as food processing environments) where it
would be undesirable to introduce pathogens (Fairchild and Foegeding, 1993). A
model developed forL. innocua (Table 6.2) was shown to underpredict
inactivation ofL. monocytogenedhus predictions are ‘fail-safe’ (Piyaseea
al., 1998). Enterococcus faeciuma non-pathogen, is also used as a model
organism for pathogens, particularly in Europe (Gagnon, 1989). The inactivation
curve for this microorganism deviated strongly from linearity, and there were
large inter-trial variations. Thus a random coefficient model using the biphasic
logistic function (equation 6.8) was used to fit the data (Reisal., 1998). The
average IrD-values for the two populations were 0.825 and 2.856.

One of the more interesting target microorganisms examined in these studies
was Enterobacter sakazakiian ‘emerging’ pathogen found to contaminate
infant formula. It was reported by Nazarowec-White and Farber (1997b) that 0—
12% infant formula samples found on the Canadian retail market (from five
different companies) containe. sakazakii Taxonomy and microbiology of
this microorganism were described by Nazarowec-White and Farber (1997a) in
their review orE. sakazakiiModel parameter values (Table 6.2) were generated
for this pathogen from three independent trials, and the resulting regression lines
are shown in Fig. 6.6 (Nazarowec-Whie al,, 1999).

The power values listed for the various enzymes and pathogens (Table 6.2)
give an indication of the extent of non-linearity of the inactivation curves. As
described above, fitting with the power law function is appropriate for concave
(tailing) inactivation curves when the power value is less than 1.0. In all cases
except one, power values were less than 1.0, suggesting that, even in a
continuous flow system, inactivation kinetics for many milk enzyme and food-
borne pathogens deviate substantially from the linear. This supports the general
observation made earlier that few, if any, survival curves are truly linear,
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suggesting that a first-order model for thermal inactivation is inadequate. A
more mechanistic appproach is clearly required to establish standard modelling
procedures for thermal inactivation of milk enzymes and pathogens in a
continuous flow system.

The parameter estimates from Table 6.2 were used to develop a stand-alon
software (PasTime) which was designed to provide users with a simple method
for calculating log reductions of milk enzymes and pathogens achieved by time—
temperature combinations specified by the user (McKed#aral, 1994a).
Provision was also made to allow the user to enter calibration data (i.e. holding
tube times and pasteurisation efficiency). The program is available free from the
author.

6.5 Modelling and risk assessment

Historically the production of safe food has been based on numerous codes o
practice and regulations enforced by various governing bodies worldwide. With
the increased concern regarding the existence of microbial hazards in foods,
more objective approach is warranted, which has led to the introduction of the
Hazard Analysis Critical Control Point (HACCP) system. HACCP as a tool for
safety management consists of two processes: building safety into the produc
and exerting strict process control (Notermans and Jouve, 1995). The principles
of HACCP have been set out by the Codex Alimentarius Commission
(CODEX, 1993) and consist of seven steps: hazard analysis, determination of
Critical Control Points (CCP), specification of criteria, implementation of
monitoring system, corrective action, verification, and documentation
(Notermanset al, 1995). HACCP processes as defined for various food
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products are often based on qualitative information and expert opinion.
Moreover, the microbiological criteria underlying HACCP are poorly
understood or defined (Buchanan, 1995).

The concept of risk assessment as defined by the Food and Agriculture
Organisation and the World Health Organisation (FAO/WHO, 1995) provides a
more quantitative approach to food-borne hazards. Quantitative risk assessmen
(QRA) is the scientific evaluation of known or potential adverse health effects
resulting from human exposure to food-borne hazards (Notermans and Jouve,
1995). It consists of four steps: hazard identification, exposure assessment, dose
response assessment, and risk characterisation (Fig. 6.7) (Notermans and Teuni:
1996). QRA is also considered to be part of the larger concept of risk analysis,
which includes, in addition, risk management and risk communication steps
(Fig. 6.7) (Notermans and Teunis, 1996). Risk assessment specifically supports
step 3 of HACCP (Fig. 6.7) (Notermaes al,, 1995). The relationship between
HACCP and risk assessment has not always been completely clear. For example
both processes start with the identification of hazards. Risk assessment is
intended to provide a scientific basis for risk management, while HACCP is a
systematic approach to the control of potential hazards in food operations
(Foegeding, 1997). Thus, risk assessment concerns the overall product safety
while HACCP enhances overall product safety by assuring day-to-day process
control (Foegeding, 1997). The view of risk assessment being associated with
one step of HACCP may be a limited one. In a contrasting view, both HACCP
and risk assessment are encompassed in risk analysis, with HACCP representing
one management strategy (Fig. 6.7) (Foegeding, 1997).

HACCP

-
’ Hazard identification

;

‘ Exposure assessment |
Step 3: < l > Risk
Specification of criteria assessment

‘ Dose-response assessment
Risk
analysis

| Risk characterisation
"

{

Risk management
(including HACCP)

!
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Fig. 6.7 Comparison of HACCP, risk analysis and risk assessment.
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The recent ratification of the World Trade Organisation (WTQO) agreement
will have a major impact on the development of new approaches for the
regulation of food. Countries will be encouraged to base their procedures on
Codex standards and guidelines to maintain and enhance safety standard
(Hathaway and Cook, 1997). This will lead to the development of harmonised
risk assessment and risk management frameworks, providing input into HACCP,
which is the primary vehicle for achieving enhanced food safety goals
(Hathaway and Cook, 1997). As the use of HACCP increases, there will be a
need for a clear understanding of the relationship among HACCP,
microbiological criteria, and risk assessment (Buchanan, 1995). Regulators will
be called upon to participate in all aspects of HACCP development, in particular
to establish public health-based targets, elucidate microbiological criteria,
develop improved technigues in microbiological risk assessment, and develop
the means for evaluating the relative performance of HACCP systems
(Buchanan, 1995). Harmonisation of international rules will clearly require
standardised approaches (Lammerding, 1997).

In order to understand the role of predictive microbiology in risk assessment,
it is necessary to further examine the various steps in more detail (Lammerding,
1997). Hazard identification involves the identification and characterisation of
biological hazards that may be present in foods. Exposure assessment refers 1
the qualitative and/or quantitative evaluation of the likely intake of the
biological agent. Dose-response assessment refers specifically to the
determination of the number of microorganisms ingested, and the frequency
and severity of adverse heath effects. Risk characterisation is the qualitative and
or quantitative estimation of the probability of occurrence and severity of known
or potential adverse health effects in a given population.

Mathematical modelling can have the greatest influence on the exposure
assessment and dose-response assessment steps. Implicit in the concept
exposure assessment is the influence of processing and environmental factors o
the survival and growth of food-borne pathogens. Mathematical models can
predict the extent of impact of unit operations on the numbers of
microorganisms, which in turn determines the exposure (Buchanan and Whiting,
1996). Specific mathematical functions to quantitate microbial growth and death
can be incorporated into risk assessments (Buchanan and Whiting, 1996;
McNab, 1997; Walls and Scott, 1997; vanGerwen and Zwietering, 1998). For
example, the Gompertz function is used to evaluate growth parameters:

logN(t) = A+ C(e*™™)) 6.16

where N(t) is the number of cells at timg A is the asymptotic count afs
decreases to zer@; is the difference in value between the upper and lower
asymptotesB is the relative growth rate a1, and M is the time where the
absolute growth rate is maximum (Buchanan and Whiting, 1996). Thermal death
models can be used to establish Bwwalue for a microorganism (equation 6.4).
Much information on microbial growth and survival has been documented, and
the resulting predictive software packages such as Food MicroModel have beer
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used to predict the influence of food composition and environmental conditions
on growth and survival of potentially hazardous microorganisms (Panisello and
Quantick, 1998). Models can therefore be used to develop CCPs, and show
where data for risk assessments are missing (Baker, 1995). In addition, models
can support regulations and optimise product formulations and support process
control (Baker, 1995). Mathematical modelling can also support quantitation in
dose—response assessment. The beta Poisson distribution model for dose:
response is (Buchanan and Whiting, 1996):
N o

Pi=1 <1+ ﬁ) 6.17
where P; is the probability of infectionN is the exposure, and and 3 are
coefficients specific to the pathogen. One is cautioned in the use of mathe-
matical models for quantitative risk assessment; important issues to remember
are the need for high quality data, extensive validation of models in foods, and
avoiding extrapolation beyond the conditions used to generate the model
(McNab, 1997).

In QRA, mathematical models are used to estimate the ultimate risk to the
consumer as a function of input values taken from various points along the
‘farm-to-fork’ continuum. Due to heterogeneity of microorganisms, variability
around single point estimates of risk can be significant. Thus, point estimates
give limited information, describing single instances such as ‘worst case’
scenarios (Buchanan and Whiting, 1996; Lammerding and Fazil, 2000).
Improvements in prediction can be made by incorporating uncertainty.
Uncertainty is an important factor in risk analysis, since it limits our ability to
make reliable predictions of risk. Uncertainty may arise from inherent variability
in the biological system, or from lack of information or understanding of the
mechanisms involved (McNab, 1997). Uncertainty can be minimised by
obtaining more, high quality data; however, as this is not always feasible,
alternatives must be sought. One approach is to describe variability using
probability distributions to represent parameter values. These distributions can
be built from empirical data, knowledge of underlying biological phenomena, or
expert opinion (Lammerding and Fazil, 2000), and the process leads to an output
where risk is expressed as a probability distribution. Risk analysis software such
as @RISKM, which uses Monte Carlo analysis to simulate output distributions
of risk based on variability of input data, can facilitate the risk assessment
process (Buchanan and Whiting, 1996; Lammerding and Fazil, 2000).

Nauta (2000) has emphasised the need to separate true biological variability
due to heterogeneity of populations from uncertainty, the lack of perfect
knowledge of the parameter values. This is commonly neglected in risk
assessment studies. Working with data on growth Baitillus cereusin
pasteurised milk, Nauta (2000) showed that prediction of outbreak size may
depend on the way that uncertainty and variability are separated.

The extended application of risk assessment procedures to the survial of
coli 0157:H7 in ground beef hamburgers was studied by Castsai. (1998)
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who defined the term Process Risk Model to predict the probability of an
adverse impact as a function of multiple process parameters. This approach i
based on the assumption that risk is determined by process variables, and the
behaviour of the microorganism can be described mathematically. Simulations
were done with the Monte Carlo approach, and rank correlations were used to
find variables which were most strongly correlated with illness. This process
allowed the identification of CCPs.

6.6 Risk assessment and pasteurisation

Mathematical modelling has been applied to dairy products and processes
(Griffiths, 1994); however, there has been limited application of QRA. Risk
assessments have been done for the growtB.ofereusin pasteurised milk
(Zwieteringet al., 1996; Notermanst al., 1997), survival ofL. monocytogenes

in soft cheese (Bemraét al., 1998), and survival of.. monocytogeneduring

milk processing (Peeler and Bunning, 1994). This latter study also incorporated
estimates of survival with pasteurisation at several time—temperature
combinations. Some of the limited number of risk assessments performed have
been reviewed, and a number of weaknesses and omissions have been identifie
(Cassinet al, 1996; Schlundt, 2000). The process of QRA is still in its infancy,
however, and standards have yet to be developed. There is a clear advantage |
the food industry and consumers to further develop the concepts of QRA and
apply them to both common and novel food processes, and it is expected thal
significant advances will be made in this field over the next decade.

Returning now to the pasteurisation models, we note that mean parametel
values (Table 6.2) provide single output values for each set of processing
conditions, but do not take into account inter-trial variability. In order to make
these models more relevant to QRA, the risk analysis software @®RISK
Microsoft Excel add-in, was used. @RISK expresses model parameters as
distributions, and when simulations are performed, outputs are calculated as
distributions. Thus, a range of probable output (e.g. survival) values for a
specified set of processing conditions is obtained, and the probability of
achieving a target log reduction can be estimated.

An Excel spreadsheet was prepared which contained the model and
calculations of PE and lqg reduction for each of the target enzymes or
pathogens. Model parametelS/R, intercept, slope and power) were entered
into the spreadsheet as normal distributions with mean and standard deviatior
values taken from previously published information for each target (Table 6.2).
For some targets, it was discovered that parameter estimates were correlated. F
example, significant correlations were observed betwegR and both slope
(r> = 0.647) and interceptrf = 0.240) for the fiveL. innocuatrials. During
simulations, @RISKM normally takes random sample values from each of the
input distributions. If parameter values are correlated, it is necessary to have
@RISK™ adjust sampling patterns to include these correlations.
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Fig. 6.8 Probability distributions forv-L-fucosidasel.isteria monocytogenesind
alkaline phosphatase generated from @Ri%Kimulations with processing at 65°C for
15s.

Monte Carlo is the traditional method for sampling distributions in which
samples are taken randomly throughout the input distribution (Vose, 1996). Latin
hypercube is a recent development in sampling technology which employs
stratification of the input probability distributions, resulting in fewer iterations
than the traditional Monte Carlo method. For these studies, Latin hypercube
simulations were done with a total of 1500 iterations for each replicate
simulation. As an example of this process, simulated log reductions were
generated for AP, FC arld monocytogenassing a holding time of 65°C for 15 s
(corresponding to thermisation), and the probability density functions are shown
in Fig. 6.8. These conditions resulted in a narrow band of probabilities for AP,
with greater predicted range for both FC alndmonocytogenesThermisation
does not completely inactivate AP, while FC (a potential indicator of
thermisation) experiences a greater than 2 log reduction in most iterations. The
mean log reduction df. monocytogenasnder these conditions is greater than 3.

Improvements in predictive power from @RISK models can be realised by
the use of percentiles. Probability distributions generated by simulation are
divided into equal probability increments called percentiles. Percentiles
represent the percentage of generated results which are less than or equal t
the associated log reduction. A failure is scored when the predicted inactivation
is greater than the experimental value at that percentile (i.e., a ‘fail-dangerous’
prediction). The lower percentiles are associated with lower, more conservative
estimates of log reduction at a particular set of processing conditions.

As an example, the results of simulations carried out with tresakazakii
trials are shown in Table 6.3 (Nazarowec-Whie al., 1999). At the 5th
percentile, the model ‘failed dangerous’ with Trials A and B; however, the more
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Table 6.3 Validation of E. sakazakiimodel using @RISKM simulationg

Number of failure$

Percentil8 Trial A Trial B Trial C

(n=12) (h=24) (h=22)

1¢ 2 3 1 2 3 1 2 3

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 0 0 0
5 1 1 1 3 3 3 0 0 0
10 2 2 2 8 8 8 4 4 3
15 3 3 3 12 12 13 12 12 11
20 3 3 3 16 16 16 15 15 15
25 4 4 4 19 19 18 17 17 18
30 6 6 6 20 19 19 18 18 18
35 7 7 7 20 20 20 18 18 18
40 8 8 8 20 20 20 19 19 19

@ Data are from Nazarowec-Whitet al. (1999) reprinted with permission froiood Research
International Copyright held by Elsevier Science Publishers.

b Probability distributions generated by simulation are divided into equal probability increments
called percentiles. Percentiles represent the percentage of simulated results which are less than ¢
equal to the associated log reduction.

¢ A failure is scored when the predicted inactivation was greater than the experimental value at that
percentile (i.e., a ‘fail-dangerous’ situation). The lower percentiles are associated with lower, more
conservative, estimates of log reduction at a particular set of processing conditions.

9 Replicate simulations.

conservative estimated log reduction associated with the 1st percentile did not
result in any failures (Table 6.3). At the higher percentiles, a greater number of
failures are observed, indicating that the corresponding predicted log reductions
are too ambitious, and unlikely to be achieved in practice. This approach allows
the user to set the level of allowable risk, then select the processing conditions
which will result in the desired degree of inactivation. The value of this
approach was further examined by comparing thermal inactivatiorE.of
sakazakiiwith that of L. monocytogenedResults of the comparison (Table 6.4)
show that at all temperatures simulaté&d, sakazakiwas more heat-sensitive
thanL. monocytogenesvith greater than 1-log difference at 68°C (Table 6.4).
Comparison of simulated lgg reductions associated with the 1st and 5th
percentiles revealed th&. sakazakiiwas only slightly more heat-sensitive at
68°C thanL. monocytogeneswith differences of 0.5 and 0.25 log at the two
percentiles, respectively (Table 6.4). This apparent decreased difference in hea
sensitivity between the two pathogens associated with the 1st and 5th percentile
predictions reflects the greater uncertainty in the slope parameter foE.the
sakazakiimodel compared to that for the monocytogenemodel (Nazarowec-
White et al., 1999).

Models which can predict the probability of achieving a desired level of
safety are an important addition to risk assessment models which are still largely
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Table 6.4 Comparison of log, reductions forEnterobacter sakazakiand Listeria
monocytogenesimulated using @RISR'®

Temperature (°C) Simulated lggreductior?
Enterobacter sakazakii Listeria monocytogenes
Mean (S.D.) Percentife Mean (S.D.) Percentife
5 1 5 1
67.0 5.46 (0.626) 4.16 3.65 4.88 (0.472) 3.89 3.47
67.5 6.51 (0.728) 5.04 4.43 5.71 (0.484) 4.67 4.23
68.0 7.75 (0.850) 6.08 5.36 6.69 (0.500) 5.59 5.13

2 Data are from Nazarowec-Whitet al. (1999) reprinted with permission frofiood Research
International Copyright held by Elsevier Science Publishers.

b 16s holding time; 1500 iterations.

¢ Percent of the total iterations which give simulated ;lpgeductions less than the values
corresponding to each temperature. For example, at 67.0°€, $akazakimodel predicted a mean
log;o reduction of 5.46, with 5% of the 1500 iterations giving a value of <4.16. Thus, in 95% of the
simulations, the model predicts >4.16 jggeduction.

qualitative, and based primarily on expert opinion. To facilitate this process, the
pasteurisation models described above have been incorporated into the risk
analysis software, Analyti€q which is commonly used for building risk
assessment models for the food industry. This software supports a modular
approach, thus pasteurisation models may be easily incorporated into larger risk
assessment models designed to encompass the entire ‘farm-to-fork’ continuum.
Models for microbial survival and growth have also been incorporated into
several large databases which are available to the food industry. Food
MicroModel, which is based on work done by the Institute of Food Research
in the UK and their collaborators (McCluret al, 1994), is a commercially
available software package which is continually updated, but which requires an
annual licensing fee. The Pathogen Modelling Program (PMP) was designed by
the United States Department of Agriculture to provide assistance to the food
industry, and is available free of charge (Buchanan, 1993). Pasteurisation
models discussed here will be incorporated into the PMP.

6.7 Future trends

The models described in this chapter have thus far been confined to enzymes
and pathogens in whole milk. Other dairy products are also of concern, thus
models will continue to be expanded to include more viscous dairy products
such as ice-cream mix. For example, preliminary studies have been undertaken
to assess the extent to which the thickening agent guar gum can influence HTST
processing (Piyasena and McKellar, 1999). Other liquid food and beverage
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products may also be potential sources of risks. Apple cider is often sold
unpasteurised to consumers who consider this product to be more natural
however,E. coli O157:H7 is often a potential risk in this product. Limited
thermal treatment of this product, combined with other intervention strategies,
may present a solution. To this end, preliminary HTST models have been
developed for a model microorganisRediococcusp., in simulated apple cider
(Piyaseneet al., 2003).

Other thermal and non-thermal processing technologies are gaining in
popularity. Current regulations which require specified time—temperature
treatments are based on thermal processes, thus it is difficult to establish
equivalent process conditions. Some of these technologies, such as radic
frequency (RF) and ohmic heating, are thermal processes, and thus may b
modelled by some modification of the present HTST models. In contrast, the
mechanisms by which non-thermal processes such as pulse electric field (PEF
and ultraviolet light inactivate microorganisms are as yet poorly understood. It
has become apparent that further work is needed to establish adequate modellin
approaches for these technologies (Institute of Food Technologists, 2000).

It is now well known that thermal resistance of bacteria can be influenced by
the conditions or stage of growth. Production of heat-shock proteins by bacteria
renders them increasingly resistant to thermal treatment. Cross-protection with
other stresses such as low pH and starvation has also been observec
Development of adequate models to describe these phenomena will require :
greater knowledge of the physiological changes taking place in bacterial cells,
thus there will be a move away from empirical modelling to more mechanistic
models which are based on expression of key genes or synthesis of heat-shoc
proteins essential for survival. This molecular modelling approach is one which
is being actively explored worldwide. Our research group is closely involved
with a large molecular modelling project with the University of Guelph.

It is well known that bacterial survival curves are rarely first-order, yet no
concerted approach to this problem has been suggested. The use of distribution:
which imply heterogeneity of cells, seems like a worthwhile and most promising
approach. Recent interested in the heterogeneity of bacterial cells (Booth, 2002
and an improved understanding of the factors which determine intra-cell
variations in heat resistance will further strengthen our ability to provide
adequate models to the food industry.

6.8 Sources of further information and advice

Important references include McMeelghal. (1993), a reference book describing
some of the principles of predictive food microbiology; Vose (1996), a book
describing the fundamentals of risk analysis and Monte Carlo simulation; and
more recently a book on food process modelling with specific chapters on
modelling uncertainty (Van Impet al.,, 2001), food safety (Baranyi and Pin,
2001) and thermal processing (Nicoktial., 2001 and Bakalist al,, 2001).
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The PMP is available from the USDA at: http://www.arserrc.gov/mfs/
pathogen.htm

Food MicroModel is available from Leatherhead Food RA at: http:/
www.lfra.co.uk/

Other useful sites:

IDF: http://www fil-idf.org/

National Milk Producers’ Federation (US): http://www.nmpf.org/

National Dairy Council (US): http://www.nationaldairycouncil.org/

National Dairy Council of Canada: http://www.ndcc.ca

Agriculture and Agri-Food Canada: http://www.agr.gc.ca/index_e.phtmi
Canadian Dairy regulations: http://www.dairyinfo.agr.ca/cdicdrcan.htm
United States Dairy regulations: http://www.dairyinfo.agr.ca/cdicdrusa.htm
International Dairy regulations: http://www.dairyinfo.agr.ca/cdicdrint.htm
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